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Ennio DE GIoRaGI

1928 - 1996
Italian

DE Giorar contributions to the
calculus of variations and min-
imal surfaces include the so-
lution of Bernstein’s problem.
His solution of Hilbert’s 19* in
dimension larger than two was
published the year before the
(independent) work of NasH. It
is thought that this simultane-
ity might be the reason why
neither of them received the
Fields Medal. The work of
DEe Giorar helped to found the
then emerging field of geomet-
ric analysis.

Ennio De Giorat on Wikipedia

Jiirgen MOSER

1928 - 1999
American - German - Swiss

Moskr found the optimal con-
stant in what is now known
as the MOSER-TRUDINGER in-
equality. Before that, he con-
tributed to differential geom-
etry with his work on dif-
ferential forms and the prob-
lem of prescribed scalar curva-
ture. He is also well known
for revisiting the results of DE
GIoral and NasH on Hilbert’s
19* problem, and his introduc-
tion of the so-called MOSER it-
eration. He was awarded the
Worr Prize in 1995 for his work
on nonlinear PDEs and the sta-
bility of Hamiltonian systems.

Jiirgen Moser on Wikipedia

John NasH

1928 - 2015
American

NasH is best known for his
work on game theory and the
notion of NasH equilibrium,
which earned him the NOBEL
Prize in Economics in 1994. But
his most significant mathemat-
ical works are his embedding
theorem for Riemannian man-
ifolds and his regularity theo-
rems for parabolic and elliptic
equations, which is the subject
of this lecture. The latter was
his last significant work before
a long period of mental illness.
He died in 2015, just a few days
after receiving the ABEL Prize.

John NasH on Wikipedia

Not written with (popular large language model), which believes De Giorct was awarded the Fields Medal in 1990 at the age of 62.
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1 Motivation

Shortly after his talk on the subject at the 2°¢ International Congress of Mathematicians (ICM) in 1900,
HiLBERT exposed his famous list of 23 problems. Among those, the 19* (Are the solutions of regular varia-
tional problems always analytic?) broadly raises the question of the regularity of solutions to certain partial
differential equations. Here is how he introduces the problem:

Eine der begrifflich merkwiirdigsten Thatsachen in den Elementen der Theorie der analytischen Funk-
tionen erblicke ich darin, dafs es partielle Differentialgleichungen giebt, deren Integrale sdmtlich notwendig
analytische Funktionen der unabhingigen Variabeln sind, die also, kurz gesagt, nur analytischer Lo-
sungen fihig sind.

which is translated by Mary Frances WinsToN NEwsoN' as follows:

One of the most remarkable facts in the elements of the theory of analytic functions appears to me to be
this: that there exist partial differential equations whose integrals are all of necessity analytic functions
of the independent variables, that is, in short, equations susceptible of none but analytic solutions.

He says more precisely that there is a class of partial differential equations (citing among others the
Laplace equation, Liouville’s equation and the minimal surface equation) which have only analytic solu-
tions, and that most of these equations are in fact the Euler-Lagrange equations for what he calls regular
variational problems. They are of the form

rr}lm/ F(Vu(x),u(x),x)dx,

where F is analytic and D?F is positive definite, which means the corresponding Euler-Lagrange equation
is elliptic. HILBERT asks if the solutions to the Euler-Lagrange equations associated to such problems
are necessarily analytic, even when requiring the solutions to meet boundary conditions, which are not
analytic themselves (but only continuous).

In dimension two, BERNSTEIN has shown in 1904 that C3 solutions are in fact analytic. This result is
further refined by LICHTENSTEIN (1912), who requires C? solutions, and by Hopr (1929), who requires
Cl@. After that, MORREY completely solves the two dimensional problem in 1938.

The ideas of MORREY do not apply in higher dimensions, and there, a gap remains: the direct method
in the calculus of variations solves the problem of the existence of solutions, but only in the class of weak
solutions, i.e. in W2, This can be improved to W2? regularity by using the ellipticity condition, but the
argument cannot be iterated further.

In this lecture, we deal with the key result of DE Giorai and NasH, who proved that in the case where
F depends only on Vu, W!?2 extrema in fact have HOLDER continuous first derivative in the interior.
Existing SCHAUDER type arguments are then enough to conclude to analycity of solutions.

This was later generalized to other settings, including integrands F depending also on x and u and
nonlinear equations. LADYZHENSKAYA and URALTSEvA have also shown regularity up to the boundary.
Other notable contributions where made by Giusti, GIAQUINTA and MIRANDA.

(1869 - 1959), American mathematician. She was the first to translate and publish HILBERT’s problems into English.



2 Some functional analytic tools PDE III

2 Some functional analytic tools

HOLDER spaces
Definition 2.1 (Continuous functions). For a set QO C R" we define
(i) CO%Q,R™) = C(Q,R™) as the set of all continuous functions f : Q — R™;

(ii) CO(Q, R")=C (Q,R™) as the set of all functions in C(Q, R™) which can be continuously extended to the
closure Q) of Q.

A function f € C(Q,R™) is not necessarily bounded on Q. But if f is bounded and uniformly con-
tinuous, then it can be uniquely extended up to the boundary, hence, it can actually be considered as a
function in C(Q, R™).

The higher-order spaces C* are defined accordingly. In particular C2°(Q, R™) denotes the space of
smooth functions with compact support in Q.

Definition 2.2 (HOLDER semi-norm). Let0 < a < 1,5 CR"and f : S — R™. The a-HOLDER semi-norm of

f in S is given by
[f]Cﬂra(S,Rm) = sup M ]

x,y€S |x - y|a
X#Y

Definition 2.3. Let QCR", ke Nand 0 < a < 1.
(i) CO¥(QQ, R™) is the set of all functions f € C(Q, R™) such that, for every compact set K C Q, [f]co.a(x m)
is finite.
(i) CO(Q,R™) is the set of all bounded functions f € C(Q,R™) such that [f]co,a@ R is finite.

Remark 2.4. We stress that there are different conventions for the definition of HOLDER spaces. These are sometimes
introduced as the spaces of bounded functions which are uniformly a-HOLDER continuous in Q.

Theorem 2.5. Let Q ¢ R", k e Nand 0 < a < 1. The spaces Ck(Q, R™) and C**(Q, R™) are BANACH spaces,
equipped with the norms

flcs@am = Y, supIDPF(I,

0<|Bl<k x€Q

“f”Ckr“(ﬁ,Rm) = ||f”ck(5,Rm) + Z SuE[Dﬁf]Co,a(ﬁl]R»1z)-
lp=k xe0

Remark 2.6.

o CO% js not separable, consider for example x > |x — xo|* for xo € [0, 1]. Smooth functions are not dense in
CO,a

* If0 < a1 < az < landk €N, we have the embeddings
ckl@Q,R™) c CF*2(Q,R™) c CF*(Q,R™) c CKQ,R™).

However, the inclusions Ck*1(Q, R™) c C*1(Q, R™) can fail, depending on Q.
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SOBOLEV spaces

Definition 2.7 (Weak derivative). Let {3 C R" open, 1 < p < oo and let B € N" be a multiindex. We say
that f € Llloc(Q, R™) has a B-th weak (or distributional) partial derivative in LfOC(Q, R™) if there exists a function
gp = DFfin LfOC(Q, R™) such that for every test function ¢ € CZP(Q, R™) we have

[ DFgyax =0 [ (g5, 00 dr.
Q Q
If for some k > 0, the B-th weak partial derivatives of f exist in Llloc(Q, R™) for all multiindices f with 0 < |b| < k,
we say that f is weakly differentiable up to order k.
When it exists, the weak derivative is unique, up to a subset of measure zero.
Definition 2.8 (SOBOLEV spaces). Let Q € R" open, k > 0.

o Let 1 < p < oo. We call the SoBOLEV space and write W5P(Q, R™) the set of functions f € LF(Q,R™)
such that the weak derivatives DF f exist in LF (Q, R™) for all multiindices B with 0 < |B| < k. This space
is endowed with the norm

1
(ZOS‘b|<k ”Dﬁf”;ZP(Q,Rm))p l,f]‘ < p S

”f”wkrP(Q,Rm) = ‘
So<ipl<k 1IDP f I zm) ifp=co.

e For1 < p < oo, we denote by W(;(’p (Q,R™) the closure of CX(Q, R™) in WFP(Q,R™), i.e.
wok"’ (Q,R™):= {f e WFP(Q,R™) : there exists (f;)jen € CZ(Q,R™) with f; — f in WP (Q,R™)} .

Endowed with their respective norms, the spaces W¥#(Q, R™) are BANAcH spaces forall 1 < p < o
and k € N.g.

Lemma 2.9 (Weak differentiability via classical derivatives on large sets, [1, Lemma 1.41]). Let O c R”
be open and bounded. Consider f € L1(Q) N CYQ\ E) with Df € LP(Q\ E,R") for some 1 < p < q < oo and
some subset E C Q. If E satisfies

inf {19l @ o1y : ¥ € CORM) with p > Tg} =0, (2.1)
then we have f € WP (Q) and its weak derivative D f coincides almost everywhere with the classical derivative.

Proof. We fix a test function ¢ € C°(Q2) and a coordinate direction 1 < i < n. By assumption, we can
choose a sequence of functions (¢j)jen € CZ(R", [0, 1]) such that (w.l.o.g.) ¢; > Ty, forall j € N, where
U; is a neighbourhood of E, and such that

lVillwir gy >0 and  ¢j(x) —> 0forae x eR",

as j — oo. Then, since ¢(1 - ¢;) € C°(Q \ E), we can integrate by parts:

tim [ fDi (91~ ) dx = = im /Q Dif ¢(1—y)dx = - /Q Dif¢dx,

by dominated convergence. We have also used D; f ¢ € L(Q), with D; f extended by 0 to all of Q. Thus,
we have

[ rpiax=tim [ 509 -u)+ o)) dr
= —/ D,‘f(P dx + 1im / f (D,'(PIJJJ' + q)Dﬂ’D]) dx.
Q ] J0

The last term vanishes since lim; e [|¢)jl|y19° @+ = 0 and f¢, fDi¢ € L1(Q), by HOLDER's inequality. In
other words, D f satisfies the integration by parts formula, i.e. D f is the weak derivative of f on Q. Thus,
we have shown f € W7(Q). o
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Remark 2.10.
e The condition (2.1) means that E is of vanishing W' -capacity.

* In general, classical differentiability outside of a null set is not enough. The CANTOR function is a example.

Morrey and CamraNaTo spaces Here, we introduce the MORREY and CAMPANATO spaces, which are
subspaces of LP-spaces, with growth conditions on the norm over small balls. When dealing with the
regularity of weak solutions, we do not have access to pointwise values of the solutions but only to norms
and other integral quantities. These spaces offer a finer degree of control and somehow bridge between
the “weaker” L? spaces and the “stronger” C"* spaces.

In the following, QO ¢ R" is open, p € [1,00) and A > 0.

Definition 2.11 (MORREY space). We call the MORREY space and denote by LP*(Q, R™) the set of all functions
f € LP(Q,R™) such that

11 sy = sup min(p, ) [ s
’ x0€Q, p>0 By (x0)NQ

is finite.

Definition 2.12 (Campanato space). We call the CAMPANATO space and denote by LPA(Q,R™) the set of all
functions f € LP(Q,R™) such that

oz = s o7 [ 1= o ool do
LPA(Q,RM) x0eT, p>0 B)(xo)nQ2 plxg

is finite.
Here, we used the notation f4 = ]qudx = |A|™ fAfdx.
Remark 2.13.

o We will mostly be interested in bounded domains Q. In this case, the factor min{p~", 1} in Definition 2.11
is typically replaced by p=.

* Because these spaces belong to LF, the finiteness of the supremum in the definition only really matters for
small p, i.e. p < po, for some fixed, positive py.

In other words, The MORREY space LP+! is a subset of L? containing functions f on a domain Q € R”
such that the integral of |f|7 over a ball B of radius p centered at x( goes to zero at least as fast as p”
uniformly in x(. The purpose of the restriction of L? to the subspace LP-! is that it allows for an alternative
to the SoBoLEV embedding theorem which can be used with exponent p adapted to the equation (and
not, for example, fixed by dimensionality). This allows “trading p for A”: choosing a smaller p results in
having to show a MORREY property with larger A, see Remark 2.15 below.

The CAMPANATO space LP is defined similarly as the corresponding MORREY space, but the integral
of |f|V is replaced by the integral of |f — f|P. This is less restrictive, so LP* ¢ LP*. The less restrictive
definition of CAMPANATO spaces allows for an integral characterization of HOLDER continuity by Cam-
PANATO’s theorem: CO% = L£P*P4 if () is bounded, with a regular enough boundary.

Although this will not really be needed, we note that for 1 < p < coand A > 0, LPA and LPA are
Banach spaces, when endowed with the norms || - [[;p1 and [ -] zp1 + || - ||zr, respectively.

More can be said in the case where Q) is bounded and regular enough, in the sense that it has the
following property:
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Figure 1: Which domains meet AHLFORS’ condition? Which domains have a LipscHITZ boundary?

Definition 2.14 (AHLFORs™ regularity condition). An open, bounded set QO € R" is said to satisfy AHLFORS’
reqularity condition if

|QQ N By(xo)| = Ap"  forall xo € Q and every p < diam(Q2), (2.2)
or some constant A > 0. Note that the left-hand side is always bounded from above by w,, p", where w, = |B1|.
Y Y Wnp

This condition forbids external cusps, and is in particular satisfied for Lipsciitz domains. It also
allows one to replace the factor p= by |QN B p(X0)|_M " in the definitions of the MoORREY and CAMPANATO
spaces.

To get a bit more intuition about these spaces, we highlight the following equivalences:
Remark 2.15. Let Q) c R" be bounded and such that (2.2) holds.
e For0 < A < n, we have LPM(Q,R™) = LPA(Q,R™). We also have
LP%Q,R™) = LPFY(Q,R™) = LP(Q,R™).

e For A = n, the spaces LP"(QQ, R™) are all equivalent and coincide with L*(Q, R™). For Q = Qo, where Qg
is a n-cube, the space L1 (Qo, R™) coincides with the space BMO(Qo, R™), which we define below. From
the remark below we have £P"(Qo, R™) C L1"(Qo, R™) = BMO(Qy, R™). Actually, we can prove that
the reverse inclusion holds, so that LP"(Qo, R™) = BMO(Qo, R™) forall 1 < p < oo.

e For A > n, we have essentially LP"*(Q,R™) = {0}. Forn < A < n + p, the spaces LF*(Q,R™) offer an
integral charaterization of HOLDER continuous functions (see below). For A > n + p and Q connected, we
have LPA(Q, R™) = {constants}.

Remark 2.16 (Inclusions of MORREY and CAMPANATO spaces).

o Assume that Q) is bounded. Recall that L1(Q)) € LP(Q) for 1 < p < q < oo. In particular, for any ball
Bp(xo) C R" and f € L9(B,(x)), we have

4

q
][ fPdx = F17 dx < ][ 1
Bp(XO) Bp(xO) Bp(xo)

by JENSEN's inequality, from which it follows

1_1
I ller @, o < C(W)Pn(" ”)Ilfllwsp(xo)),

where we have used |B,(xo)| = c1(n)p™.

» Assume additionally that Q fulfills AHLFORS™ condition Equation (2.2). As noted above, this allows us to
replace p~ by |Q N B p(xo)l‘% in Definitions 2.11 and 2.12. Applying the above to f € L1+(Q3), we get

1Q N B, (x0)| 7 / P dx < c(n)?

By(x0)NQ B

_qA 1_1 7
[oXa: NED] el a)/ f9dx
p(xo)mQ
P
q

£ dx) ,

< c(n)

S (1oL e _u
20 By(xo) 1510 0 B () g
Bp(xo)ﬂQ

2Lars AHLFORS (1907-1996), Finnish, was awarded the first FieLps Medal in 1936.
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where the right-hand side is bounded if—% +q (’l) - %) +£ > 0. It follows

LTH(Q) C LP’A(Q) and L7(Q) c LP’A(Q)

whenever

gzp and
hold.

Among these domains, domains with LipscHITZ boundary are important, in the sense that they have
the extension property.

Proposition 2.17. Let Q) C R" be open and bounded, such that dQ is LipscHirz. Then  has the extension
property, i.e. forall 1 < p < oo and any open set Q2 o Q, there exists ¢ = c(n,Q,Y) such that for all
u € WYP(Q), there exists ii € WYP(Q) such that ii|q = u and

Netllyrp @) < cllullwirg) -

Theorem 2.18 (CAMPANATO). Let Q C R" be open, bounded and satifying AHLFORS’ regularity condition (2.2)
for some A > 0. Then, for every 0 < a < Land 1 < p < oo, we have the isomorphy

Lp,nﬂwz (Q/ Rm) ~ CO,a (5[ Rm) ,
and the semi-norms [ - | gpn+pa(qrmy and [ -] Coa(@Rm) AT equivalent.

Proof. We follow [11].
We consider only the case m = 1, the general case follows by considering components individually.

e Step 1: CO%(QQ) C LP"+P¥(Q))

Let f € C%*(Q). We have that for every xo € Q and p > 0, there exists y € QN B p(x0) such that
fly) = fQﬂBp(XO)' It then holds:

[ - fomeoldr= [ 10 fP dr
QNB,(xo)

QQBP(X(])

[ YOO,
QNB(x0)

lx —yl*P

<1Q 0 By(xo)l [1L,, 5 20)

< c(n,p)[f]’éoﬂ@pwpa .

This shows the following bound for the semi-norm:
[flerma) < c(n, P flcoa) -
Since Q is bounded, we also have a bound on the L” norm:
Ifllr@ < 1217711 llco -
By combining these two estimates, we get

”f“l:p,nﬂnx(Q) < C(l’l, p, Q)“f“CUa(ﬁ) .

e Step 2: Continuous representative for functions in LF""*7%(Q2).
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Let f € LP"*P%(Q)). We first need an estimate for the average of CAMPANATO functions on balls. We
take xg € Qand 0 < r < R < diam(Q), and we use the JENSEN inequality to compute

14
foaom ooy — formon| < ( ]{) ) = forace dx)

ﬁBr(xﬂ)

1
_1 o 4
< 10N By (xg) FRE* (R [ - meR<xo>|P)
QNBRr(x0)
<c(n,p, A)r PRV f] prmwveqyy (2.3)

where we used AHLFORs’ condition in the last step. We now consider the sequence ( fQﬂBr]_ (xo)) -
]€

where r; = 27JR for some 0 < R < diam(Q). Thanks to (2.3), for 0 < j < h, we have:

| fans,, (o) = fans, (o)l < D ans,, o) = fans, o

j<b<h-1
< c(n,p, A) [f]grmra(yRY Z A1) 5=t +a)
j<t<h-1
<c(n,p,aA) [f]£p,»z+pa(Q)R”‘2‘j”
=c(n,p,a,A) [f]ymm(g)r]‘-" , (2.4)

where we underline that this estimate is independent of xg. So, the sequence of averages is not only
a Cauchy sequence, which yields pointwise convergence to some f*(xp), it also converges uniformly
over Q to f*. Also note that due to Theorem A.1, f* is also a representative of f in LP"+/*(Q).
Moreover, for fixed 7, the function x +— fonp,(x) is continuous, so that f* is continuous as the
uniform limit of a sequence of continuous functions. This is the representative we are looking for.

* Step 3: HOLDER continuity of f~.

We now take two point x # y € Q and set 7 := |x — y| > 0. Then, we have

1f* () = )] < 1f7(x) = fanBy, )| + [ fansy ) = fan, o)l + [ fans, o) — £ W) - (2.5)

Passing to the limit 1 — oo in (2.4), the first and third terms on the right-hand side can be estimated
by
C(Tl, p,a, A)[f].ﬁp"’+p"(0)|x - y|a s

so, in order to bound [ f*] o @ only the second term needs to be dealt with. We do this as follows:
first recall r = |x — y| and note that

QN By (x) N Bay(x) D (QN By (x)) U(QN B(y)).

With HOLDER's inequality and the fact that f € LP7*P*(Q) we compute:

| fanB,, (x) = fanba ()| < ][ (Ifans, () = @I +1f(2) = fars,ml) dz

QNBy, (x)NBar ()

1
p-1 r
< 1QAB®IIQN By ()T ( / Ionssio —f(Z)I’”dZ)
Q

NBor(x

?

+1QNB(y)'1QNn B2r(y)|% (/Q | fanB,, o) — f(2)IP dZ)

mBZV (y)

p-1 , ntpa

+n =
2 [

< C(Tl, A)[f]Lp,n+;7a(Q)r_n
= C(n,A)[f]Lp,nera(Q)ra .



2 Some functional analytic tools PDE III

All together we get
() = Wl < eln, p, a0, A)flrmweolx = yI*

Since x, y € Q are arbitrary, we have in fact
[f*]co,a(ﬁ) < C(Tl, p, (X/A)[f].CV'”*V“(Q) ’ (26)

which proves that the norms are indeed equivalent.

It remains to show that the supremum of f* is finite, i.e. that f* € C%(Q). We use CHEBYSHEV's
inequality (see Theorem A.5) with

1 -1
a=|lfllr?2? [QNBi(x)] 7,
which gives

_190Bi)]

— 1 _1
{x €171 2 Il 2t 10N BT < =55

In other words, for all x € Q, we can find a set
Qv CQNBi(x), with [Qyl > 3QNBi(x)| >0,

such that f is bounded on Q, , by 2. We now p_ick y € Qy 4. Then, from the previous estimate for
the C%“-semi-norm of f*, we get for every x € Q

FEOI<IF ) = FWI+ W < e, p,a, Alflgrrrey + e, Allflpey . 27)
All in all, we have shown
1/ coagqay < €t p, a, Al fllgrmrey

and hence f possesses a representative in C%%(Q) and the proof is complete. ]

As a consequence we have

Corollary 2.19. Assume that Q C R" is open, bounded, with LipscHiTz boundary. Let p > n and u € WP(Q).
Then u € Co’l_%(ﬁ) and

lull s o5 < llellwiney -

7(Q)

with ¢ = ¢(Q, p).

Proof. Pick xg € Qand p > 0. We want to estimate fQ (B, (x0) |lu = uanB, (x| dx. If we work with u directly,
P

we are able to get a factor p"_fﬂ’ using the POINCARE-WIRTINGER and HOLDER's inequalities, but this is not
enough. Extend u to a function i € WP (R") with

il wir @y < callullwiry -

Using the POINCARE-WIRTINGER and the HOLDER's inequalities,

/ |lu — qu(xO)l dx < / |ii — ﬁBp(xo)| dx
QﬁBp(XO) Bp(x(])

<czp/ |Dii| dx
Rl’l

4
<c3 / IDa|P dx| p" v,
Bp(x0)

thatis, u € Ll’n+l_%(Q) = Co’l_%(ﬁ). O

10 10
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Figure 2: Illustration of a WEIERSTRA® function (left) and a BLANCMANGE curve (right)

From this, we have a generalization of MORREY’s inequality, or Sobolev-Morrey embedding theorem to
cases other than just p > n:

Theorem 2.20 (MORREY’s theorem on the growth of the DiricHLET integral). Let O C R”" be a bounded

domain with LipscHITZ boundary and let 1 < p < n. Ifu € Wll’p(Q) is such that Du € Lf’n_erpa(Q) for some
ocC ocC

a €(0,1), then u € CO4(Q).

Proof. Again using the POINCARE-WIRTINGER and the HOLDER inequalities, we have for any ball B,(x¢) €
Q
/ |u - qu(xo)lp dx < Cpp/ |Du|p drx < Canrpa”Du“rL]w—mm(Q) ’
Bp(XO) Bp(xo)

pn+pa
loc

(Q), and we finish the proof by applying CAMPANATO’s theorem.
m

Using coverings, we get that u € L

Remark 2.21. The converse statement cannot hold, as HOLDER continuous functions are not necessarily weak
differentiable. Examples are the WEIERSTRAR functions

fx):= a* cos(b*nx), with 0<a<1 and ab>1,
k=0

and the BLANCMANGE curves

k
f=y CY,

k>0

where s is the triangle wave function s(x) := min,ez |x — z|.

Definition 2.22 (Bounded mean oscillation). Let Qo C R" be an n-dimensional cube. We say that a function
ue Llloc(QO) is of bounded mean oscillation, which we write u € BMO(Qy), if

[u]pmo = SuP][ |u —up,|dx < o0,
Q

qufudx
Q

is the average of u over Q and the supremum is taken over all n-cubes Q C Qo whose sides are parallel to those of
Qo. Alternatively, one can use balls in the definition.

where

A fundamental result for BMO functions is exponential integrability:

3Fritz JoHN (1910-1994) German-born American mathematician. He worked on the RADON transform, water waves and nonlin-
ear elasticity.

‘Louis NIRENBERG (1925-2020) tasked NasH with the problem of regularity of solutions to parabolic equations with rough co-
efficients in 1956 during his stay at the COURANT Institute. He was awarded the ABEL Prize in 2015 together with NasH for his
work.
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2 Some functional analytic tools PDE III

Lemma 2.23 (JouN’-NIRENBERG* Inequality [6][5, Theorem 7.21]). Suppose that v € BMO(Q). Then there
are positive constants cq and cy, depending on n and [v]gmo only, such that for every By, (y) C Q, we have

][ exp (c1]v = vp,(yl) dx < .
Br(y)

The proof is a bit involved and —time permitting— will be covered at the end of this lecture.
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3 Elliptic equations PDE III

3 Elliptic equations

3.1 Inner regularity

In this section, we consider the following linear equation, set on some domain (i.e. nonempty, open,
connected set) of R", where n > 2:

div(A(x) Vu(x)) = Z %

i,j=1

(aij(x)%u(x)) =0, (3.1)

where the matrix A(x) = [a”(x)]1<;,j<n has measurable entries. If  is such that (3.1) holds, we will write
Lau = 0 for short. We will also need the ellipticity and boundedness of A, that is, there exists A > 1 such
that

AT < A(x) < AT

for almost all x, where the inequality is meant in the sense of symmetric matrices. In other words, for
almost all x and for all £ € R", we require

ATV S(E AR E) <A, 3.2)

for some A > 1. If A is diagonalizable and (A;(x))1<i<» denote the eigenvalues of A(x), this condition is
equivalent to A™! < A;(x) < A for almost every x. This also means that A is positive definite.

Definition 3.1 (Weak solution). Let Q C R" be open and bounded. We say that u € W'2(Q) is a weak solution
of (3.1) on Q if the equation

/(V¢(x),A(x)Vu(x)> dx =0
Q
holds for all test functions ¢ € C°(Q).

Theorem 3.2 (DE GIORG], [3], NasH [10], MosER [8, 9]). Let u € W'2(Q) be a weak solution of (3.1) where A
fulfils the condition (3.2). Then there exists 0 < a(n, A) < 1 such that u € C%*(QY) for all ' € Q. Moreover,
there exists C(n, A, Q, Q) > 0 such that the following norm estimate holds:

lullcoary < Cllullrzqy -
3.1.1 The method of DE GIioRraGI

We follow VASSEUR [14].

Remark 3.3. Let u € W2 be a weak solution of (3.1) on some domain Q, where A fulfils (3.2). Scalings and
translations of u solve a similar equation, for which (3.2) still holds. More precisely: let A > 0, xg € Qand € > 0
and define

u(y) == Au(xo + €y),

fory € Qc {yeR":x0+eyeQ}. Let p € C(Q) and define ¢ ==y — @(xg+€y), B :=y — A(xo + €y).
We then have

./6<Vyv(y),B(y) Vyp(y))dy = /ﬁ(eAqu(xo + ey), Alxo + ey) eVip(xo + €y)) dy,

= e‘”+2A/(qu(x), A(x) Vyo(x)) dx
Q
=0,

since ¢ € CP(Q). It follows that v in a weak solution of Ly = 0 on Q, where the condition (3.2) holds for B.
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3 Elliptic equations PDE III 3.1 Inner regularity

Remark 3.4. We will prove Theorem 3.2 on the balls By and By, this is without loss of generality. By translation
and scaling, one can get the result for any balls, as follows. Let d = dist(QY’, dQ). For any xq € (Y, we define

v(x)=u(xg+d-x),

where x € By, so that by Remark 3.3, v is a weak solution Ly = 0 on By, where B fulfils (3.2). Thenv € Ccoa(B 15)
where a depends neither on xq nor on d, so that u € C%*(QY),

The proof of DE GIORGI can be split in two steps. First, one derives an estimate on the supremum of
u, using the control provided by the so-called energy. Second, one shows, using the estimate in L*(£Y'),
that u is in fact in C%*(QY).

First step: the supremum bound

Lemma 3.5. There exists * > 0, depending on n and A only, such that for any u € W'2(By) weak solution of
(3.1) in By, where A fulfils (3.2), we have the following. If

||u+||L2(Bl) < 6* ’

then

1
[+ llz=8,,) < 7 -

Remark 3.6. Note that the constant 0* is independent of u, this is key. By scaling, similar results holds for balls
of radius different from 1 and 1/2, albeit for a different constant 6*. This already offers some reqularization: if the
L2-norm of u is small enough in a ball, u is actually bounded (a.e.) on a ball with half the radius. However, u may
be unbounded near the boundary of the larger ball.

Before we dive in the proof itself, we introduce some notation, and comment on the general idea.
For 0 < k < 1, we define the family of nested balls

Bl = Bipaa-ty /

which are so that B, = By and B; — Bij as k — +oco. We also define a corresponding sequence of “energy
levels” ex:

ey = % (1 —Z_k) ,
and
ug = (u —ex)+
as well as

Uy = / ()2 dlx
By

Note that Uy = ||u+||i2(31).

We want to derive an estimate of the form
Up < Ckulf ’ (3.3)

where C > 1 and 8 > 1. We stress that this inequality is nonlinear, even superlinear, which is crucial: On
the one hand, for the first factor, we have that limy_,e C¥ = +00. On the other hand, B > 1, this means
that if Uy (the L>-norm of u, on By) is small enough, the nonlinear factor will “beat” the factor C k and
the sequence Uy can be shown to converge to 0. This means that at the limit we have

/ (u(x) - %)i dx =0,
Bs

so that u(x) < % almost everywhere in By, i.e. u € L*(Buy).
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3 Elliptic equations PDE III 3.1 Inner regularity

The nonlinear inequality (3.3) is obtained using elementary results. Two of them are essentially linear
in nature, the SOBOLEV’s imbedding theorem, and the energy estimate, see Lemma 3.7 below. The third
is nonlinear however, MARKOV's inequality, which states that for a positive, measurable function f, we
have

I Nl

[{x: fx) > a}] < /

a
for any a > 0. See Appendix A for a proof. Note that this result can be generalized by replacing the
right-hand side by ||f||", /a”, becoming CHEBYSHEV's inequality.
In order to use the nonlinear estimate, we need to pay in terms of the level sets of f, which is why we
introduced the level sets ek.
The proof is split in three steps:

Step 1: The energy estimate We first start by proving the following:

Lemma 3.7 (Energy estimate). Let u € WY2(B,) be a weak solution of Lau = 0, where A fulfils (3.2), and let
¢ € C°(By). Then there exists C > 0 independent of u such that the following inequality holds:

[ Wuorar<civolp. [ udr.
B, B

rNsupp ¢
Moreover, C = A2 if A is symmetric.

In the literature, such estimates, which offer the control of some L2-norm of Vu in terms of some L?-
norm of u are known as CAcclopPPoLI (type) inequalities. The idea at the core of the proof of DE GIORaI is
to this estimate if iterated on smaller and smaller balls. A similar iteration procedure was used by Nasu
and MoskR in their proofs. Theorem 3.2 can also be proven in a continuous way, by integrating instead
of iterating, see [4, Section 8.5] and [13] for the original paper.

Proof. We test the equation with ¢?u. to get
/ (V(¢*uy), AVu,)dx = 0.

Since we are interested in the L>-norm of V(¢u,), we somehow need to symmetrize this expression and
move one ¢ from the left to the right. We have

0= (V(¢2u+),AVu+) dx
B,
=/(¢V((pu+),AVu+>dx+/((¢u+)V¢,AVu+)dx
B, B,
=/(V(¢)u+),AV(¢)u+))dx—/(V(¢)u+),Au+V¢>dx+/((gbuQqu,AVm)dx
B, B, B,
= [V, A dx = [ (Vg (4= AT V) dx
- [, AT V) dx + [ (gu)Ve, AV ds
B, By
= [ (V(puy), AV(puy))dx = [ (V(puy), (A - AT)u, V) dx

B, B,

- / (uiVep, AT Vo) dx - / ((pus)Vuy, AT V) dx + / ((pus)Ve, AVu,)dx.
B, B, B/

e If A is symmetric, the second term vanishes and we get:

/ (V(¢puy), AV(puy)ydx = / u2(Vo, AT Vo) dx,
B, B,
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3 Elliptic equations PDE III 3.1 Inner regularity

and at this point, the ellipticity condition (3.2) yields

/ |V(q§u+)|2dx</\2/ u$|v¢|2dx</\2||v¢||2w/ u?dx.
B, B, B

rNsupp ¢

e If A is not symmetric, we estimate the second term as follows:

’ / (V(puy), (A - AT)u, Vo) dx
B,

< /B (V(its), A V)| + [(AV (i), 12 V)] dx

cont.
< 2A|IV(u)llr2llus Vel

ellipt.

< 2A3( <V(¢u+),AV(¢u+)>dx)2 s Vb2

B,
Younc 1

_ 3 2 2
< 2/B,<V(¢u+)’AV(¢u+)> dx +2A ‘/B, ut|Vel~dx

After plugin this back into the expression above, this gives

0> [ (V(gus), AV () dx = AL+ 2% / VP .

and after making use of the ellipticity:

/ [V(¢pus)|*> dx < 2A%(1 +2A2)/ u? |[Vo|* dx < 2A? (1 +A2) ||v¢||2m/ u?dx,
B, B, BrNsupp ¢

which is the estimate we wanted.

O

Step2 We willnow use our freshly derived energy estimate (or CaccioproL1 inequality) in the nested
ball B} To this end, we introduce a family of cut-off functions ¢ such that:

¢r € CS(B,_,) and ¢r=1inB,

with
Vol < C2F.

Uk=/ |uk|2dx</qbiu£dx.
B, B

Note that we have

At this point, let us recall

Theorem 3.8 (SOBOLEV’s inequality [12]). Assume n > 3. We write 2* = % For any smooth, bounded
domain Q) C R" there exist a constant S such that for any u € Hé (Q) we have the following inequality:

]2 ) < SIVEIZ, () - (3.4)
L27*(Q) Q)

See for example [2] for a proof.
We have also 1 B, S or <1 B, and uy41 < Uy, so that applying SOBOLEV’s inequality to v = Qr41tk41
on B} we get

2/2*
(/ (Ors1tts1)” dx) < 5/ IV(prarties1)|* dx,
B, B
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3 Elliptic equations PDE III 3.1 Inner regularity

and using Lemma 3.7 gives

< 2% / |usn | dx
B/

k

<c22’</ lug|> dx
B/

k

< Ckuk .

We can now use MARKOV’s inequality:
2 .2
U1 < /B/ PipqUpepr dx
k

and HOLDER's inequality with exponents (n/(n —2),2/n):

2/2%
< ( (Prs1tiksn)® dx) {Prsrttxs1 > O}"
By

assuming k > 2 we have
- - 2
< Ckukl{(Pkuk >2 (k+2)}|2/n — CkukH(qbkuk)z > 2 2(k+2)}| /n

Ck 1+2/n 8/n [H4/n k 1+2/n
< s <2 (2#nc) up.

This is exactly (3.3) with f =1 +2/n.

Step 3 This is the final step. Recall that we are looking for 0" such that if ||u || 25,y = Uo < 6%, then
[|2]| L(By, < 1/2. Using a comparison argument, we will now show that Uy converges to zero. Let us

define the statement P(k) as
1

-1
(2C)FT
We start by showing that P(k) holds for any k, provided that Uy is small enough. We first choose kg such
that

(3.5)

1 1
o ST T
20 oyt
holds. Ug+1 < U by definition, so that we can choose 6* small enough such that for any Uy = ||u ||i2 (B1) <

(6%)?, P(k) is true for any k < ko. We now show by induction that P(k) is also true for k > ko. Fix k < ko
and assume that P(i) is true for all i < k. Using (3.3) we have

4

1
uk+1 < k+1 7
(2C)H
so that
cfte Lo Lo b
k+1 2k+1 ko (ZC)I{’%]

so that P(k + 1) is true. It follows that

/ (u-1)2 dx = lim Uy =0,
Bl/z k—o0

which implies [[u, || Lo(By,) < % This finishes the proof of Lemma 3.5. O
As a consequence of the scaling method mentioned in Remark 3.6, we have the following result:
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3 Elliptic equations PDE III 3.1 Inner regularity

Corollary 3.9. Let Q C R" be a smooth bounded domain. Let u € W*(Q) be a weak solution of (3.1) in Q,
where A fulfils (3.2). Then, u € L*(CY') for any ()’ € Q.

Proof. Let d := dist(CY, dQ). For any xg € (’, define v on B; as

u(y) = 0" u(xo +dy),

2
1l 2
where 0" is the constant given by Lemma 3.5. v is a weak solution of Lg = 0 on B; for some B fulfilling
condition (3.2) (see Remark 3.3). Moreover, we have [[v||;2,) < 07, so that we get v(y) < 1/2 almost
everywhere on B;. Applying the same reasoning for —v, we get

lo(y)l <

a.e.,

N =

from which it follows that
iy < (871 |ull 2 -

O

Second step: the Oscillation lemma In this section we deal with the second and last step in the proof
of Theorem 3.2, which is the proof of so-called Oscillation Lemma below.
We first start by definition the oscillation:

Definition 3.10 (Oscillation). For any open set A and any real-valued function f on A, the oscillation of f on
A is defined as

osca f =sup f —inf f.
A A
We can now state

Lemma 3.11 (Oscillation Lemma). Let u € W'2(B,) be a weak solution of (3.1) on By where A fulfils (3.2).
Then there exists a constant A(A, n) < 1 such that

0SChy, u < Aoscp, u
holds.
The DE GIorGI-NAsH-MOsER Theorem follows a consequence of the Oscillation Lemma:

Proof of Theorem 3.2. Take xo € (¥ € Q and let d := dist(Q2’, dQ2). We introduce the family of rescaled
functions vy, defined on Bj:

n1(y) =u (xo + %y) ,
ok(y) = v (y/4) = u(xo Lt y) ,
As we have already seen, the functions vy are weak solutions of Lg, vx = 0 where
Bi(y) = A(xo + 7 y)

again fulfils (3.2), with the same constant A. With this, we can apply Lemma 3.11 recursively on the vy,
which gives

0SCpy, Vk+1 S A 0SCh, Ukl
Aoscg, (v — vi(y/4))

)LoscBl/2 Uk
A

k
0sC 0
81/2 1

N NN

N

225 | o)
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3 Elliptic equations PDE III 3.1 Inner regularity

Then, we have the following estimate:

sup  |u(xo) — u(x)| < oscpy, V41 < 245wl ,
|xo—x|<4~(k+D) g

which depends neither on d nor xg. We define the interval Iy := [4-(+D) 4 47 4] and then write

[u(xo) — u(x)] |u(xo) — u(x)] 225wl o) 207 ullio@) ok
—————— =sup sup ———— = < ———— =sup——(A4")
|xo—x|<d |xo — x|* keN |xo—x|elk |xo — x| keN 4=t keN 47
Picking
2427
the limit of the right-hand side is finite and u € C%*(QY’). O

We can reformulate Lemma 3.11 slightly, in the following way:

Proposition 3.12. Let v < 1 be a weak solution of Lav = 0 on By, with A fulfiling (3.2). If there exists u > 0
such that |B1 N {v < 0}| > u, then there exists a constant A depending only on n, u and A such that the following
estimate holds:
supv < 1-A.
7
In other words, if v is a solution of L4v = 0 which is smaller than or equal to one on B; and which
remains “far from one” (nonpositive) on a set of positive measure, v cannot get arbitrarily close to one
on By,.
Let us show how this leads to Lemma 3.11.

Proof of Lemma 3.11. We rescale u between —1 and 1 by considering the function v defined as

sup,. u + infg, u
2 u(x) - Ps, 2

v(x) =
) 0scg, U 2

We have |v]| < 1. Assume that v < 0 on (at least) the half of B;. Applying Proposition 3.12 to v yields that
0sCp, , © =supv—-info<1-A-(-1)=2-4,
2 B1/2 B1/2

from which it follows from the definition of v that
0SCB, U
2

Working with (—v), we get the same result if v > 0 on (at least) the half of By, since osca(—v) = oscav. O

0SCp,, U = 0SCB;, U < (1-A/2)oscp, u .

To prove Proposition 3.12, we may first note that if
[Bi N {v <O} > [Bi| - (5,
where 6" is given by Lemma 3.5. then, if follows from the bounds on v that

lo+llz2B,) < 67

and Lemma 3.5 imply that v4p,, < 1.
The main tool is the following inequality of DE Gioral. It may be considered as a quantitative version
of the fact that a function with a jump discontinuity cannot be in W2,
We first need to introduce some more notation. For some measurable function w defined on By, we
define the following subsets of Bj:
S, = By N {w < 0},
"Sw:=B1N{0<w <%},
mSw =BiNn{¥<w}.
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3 Elliptic equations PDE III 3.1 Inner regularity

Lemma 3.13 (De GIORGI's isoperimetric inequality). There exists a constant C,, > 0, depending on n only,
such that the following holds: If w € W'2(By) is such that

[Vw,|*dx < Co,
By

then we have )
_1
Co(IysSul I "Sul'#) < Col 38l

Proof. Consider w := sup(0, inf(w, ¥2)). Note that the weak derivative of w fulfils

Forany x € °Sy, y € 125w, we have
o Yd_
% <w(y)-w(x) = ‘/o $w(x +t(y —x))dt
1
= / (y —x) - Vw(x + t(y — x))dt
0
sets =t|y — x|
lx-yl
< / |[Vw(x + se;)|ds,
0
where e¢; = (y—x)/|y —x|. The integrand in the last integral is nonnegative, so it is increasing in its upper

bound. This means that, by “extending” Vw by 0 outside B1, we can bound it from above by integrating
up to infinity and get

N =

< / |[Vw(x + ses)| ds .
0

We can now integrate with respectto y € ,,S, to get

|1/25w|/2</5 (/0 |Vﬁ(x+seg)|ds) dy

1/2°w

</B (/Ooo |V%(x+se(,)|ds) dy

1 )
< / r”‘1/ (/ |V%(x+seg)|ds) dodr
0 s-1 \Jo
< / / |Vw(x + ses)| ds do
st=1 Jo
= / / SVl—l M ds dU
sn-1J0 Sﬂf1
Vw
_ / | (y)ll dy,
B, |x =yl
where the last equality holds with our abuse of notation. We can now integrate with respect to x € 'S,

to find
sl el < [ val( [ ) a.
Bl Osw |y _x|n_

N —
= IOsw (y)

We change to polar coordinates
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3 Elliptic equations PDE III 3.1 Inner regularity

Since the integrand in Iog  is a positive nonincreasing function of [y — x|, Iog is maximized (among the

sets of measure | S, |) by the ball of radius (1]°S,|/|S"![)!/" centred on y. In other words we have the
following inequality, for any y,

@Sl g
Ig (y) < do il — < cnl°Swl™",
w Sn—l 0 rn

where |S,—1| denotes the surface area of the (1 — 1)-dimensional unit sphere S"~! c R”. Outside %S0,
the integrand in the integral over B is zero, so, after making use of the CAuCHY-SCHWARZ inequality, we
get

1
2

1
|05w||1/zsw|/2 < Cn|osw|1/n ('//2 |Vw+|2 dx) |1/3Sw|2 .

0°w

Since ﬁ/zs |Vw,|?dx < Co, the proof is complete. O
0 w
Proof of Proposition 3.12. We consider the new sequence of truncations
wr =20 -1-2F)=2kw-1)+1.

Note that for any k, we have that wy < 1 and wi41 = 2wy — 1. Making use of the energy estimate
(Lemma 3.7) with r =2 and 15, < ¢ < 13,, we have

V. Pdx < [ 1Vigw.Pdr<C [ . Pdx<Co.
By By By
We also have |By N {wy < 0}| > u. It is now possible to apply Lemma 3.13 on wy iteratively, as long as

(wr1); dx > (8577 (3.6)
By

Assume that (3.6) holds for some k, so that

B0 (i > 0)1 = B0 2w > 11> [ (raltd > 677
S— By
S

1/2°Wk
From Lemma 3.13, there exists a constant C,, > 0 which does not depend on k such that
1B1 0 {0 < wi < Y3} = Cu/Coll1sSuwy | S '™
Note also that by assumption, we have
[°Sw |l = |B1 N {wi <O} > [°Sw, | = °Swyl = 1B1N{v <0} >pu>0.
Putting is all together, there is a constant > 0 such that

[BinN{0<wi <%} =7.

Then,
|Oka| > |Oswk71| +)/ > ‘U+k7/,

which fails for k large, say for k > ko. Then,

(w12 dx < (6"
By

Lemma 3.5 then implies that wy,+1 < 1 in B14. Rescaling back to v gives the result with A = 2-%0*2). ¢
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3.1.2 The iteration of MoSER

We follow ZHONG [16].

In this section, we will present the alternative approach of Moser, which he published in [9]. The
main goal is to derive the HARNACK type inequality which follows.

But first, we let us extend our notion of solution to subsolutions:

Definition 3.14 (Sub- and supersolutions). We say that u € W2(Q) is a weak subsolution of (3.1) if

/<V¢(x),A(x)Vu(x)) dx <0
Q

holds for all ¢p°(€2). We define weak supersolutions similarly, by changing the direction of the inequality.
We can now state the following:

Theorem 3.15 (HARNACK's inequality). Let u € W'2(Q) be a nonnegative, weak subsolution of (3.1), where
A is symmetric and satisfies (3.2). Then, there is a constant c(n, A) > 0 such that for every ball B,(y) C Q we
have

sup u <c inf u.

B, a(y) Brpa(y)
Remark 3.16. Note that, here, A is assumed to be symmetric, as opposed to Section 3.1.1.

As a consequence, we have:

Theorem 3.17. Let u € W¥2(Q) be a weak solution of (3.1) where A is symmetric and fulfils (3.2). Then there is
0 < a(n, A) < 1, such that u € C%%(Q). Moreover, for every ball Br(y) € Qand all 0 < r < R < oo, we have

o
0SCB, (y) U < 2¢ (%) OSCB(y) U -

The proof is again divided in two parts, for the sup part and the inf part, respectively.

HarNAcKk’s inequality: sup Let us first prove the local boundedness of weak solutions

Lemma 3.18. Let u € W'2(Q) be a weak solution of (3.1) where A is symmetric and satisfies (3.2). Then
u € L (Q). Moreover, for every ball B,(y) C Q, we have

loc
1
2
sup |u|<c(][ |u|2dx) ,
By ja(y) B (y)

where ¢ = c(n, A) > 0.

As in the previous section, we will proceed by iteration. The core tools are a CACCIOPPOLI type in-
equality, and, again, Sobolev’s inequality. Let us start with the following inequality (compare with
Lemma 3.7).

Lemma 3.19. Let u € W2(Q) be weak solution of (3.1) where A is symmetric and fulfils (3.2). Then, for any
a > 0 such that u € L{(Q) and any 1) € CZ(Q), we have

[uevupiax < [ uivntar,
Q Q

where ¢ = c(A) > 0.
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Proof. Fixn € CX(Q) and let t > 0. Define v := (u — t),.. We test the equation (3.1) with ¢ = vn? € Hé (Q)
and obtain

0= / (Vo, AVu) dx (3.7)
0
= /(V(u —t)4, AVuyn?dx + 2/(Vn,AVu>(u —t)indx.
0 0
To estimate the last integral, we use the CAuCHY-ScCHWARZ inequality:

(Vi1 AVu)| < (Vu, AVi)2 (Vi AVR)

and Holder’s inequality. After squaring, this gives

/ (Vu,AVu)nz dx < 4/ (Vn, AV |(u - ). >dx,
{u>t} {u>t}

At this point, we use the boundedness and ellipticity condition (3.2) to get
/ [Vu|*n? dx < 4A2/ l(u - t)+*|Vn|*dx < 4A2/ s |?|V|? dx .
{u>t} {u>t} {u>t}

Now, the above inequality holds for all # > 0. Multiplying both sides by at*~! and integrating with
respect to t over (0, c0) we get

/ ate ! (/ |Vu|*n? dx) dt < 4A2/ at® ! (/ |u+|2|Vn|2dx) dt,
0 {u>t} 0 {u>t}

and using Fubini-Tonelli:

/ |Vu+|2172 (/ at“‘lﬂ{u>t}(x) dt) dx < 4A2/ |u+|2|Vr]|2 (/ at”‘_lﬂ{wt}(x)dt) dx.
Q 0 Q 0

Note now that {u# > t} = {us > t}, so we can replace the upper bound in the inner integral by u, and
get:

/ [u|¥| Vg |*n? dx < 4A2 / g |*2| V2 dx .

Q Q

Similarly, we get the same estimate for #_, and sum the two to get the result. m|
SOBOLEV’s inequality now gives

Lemma 3.20. Assume n > 3 and recall that the critical SOBOLEV exponent is given by 2* = 2n/(n — 2). Let

u € W2(Q) be a weak solution of (3.1) where A symmetric satisfies (3.2). Then, forany a > 0,u € Lfg:z)z*/ 2Q)
ifue Lﬁ;Z(Q). Moreover, for any nn € CZ2(Q),

2
* (ar+ * 2%
(/ u| = dx) < c(a+2)2/ u|*2|Vy|2dx, (3.8)
Q Q

where c = c(n, A) > 0.
Proof. Define v := |u|>un, so that
Vo= (£ +1) [ul2nVu + |u|2uVy.

To estimate the L?-norm of Vv, we use Young’s inequality and Lemma 3.19 to get
/ [Vo|>dx < c(a + 2)2/ [u|**2|Vn|* dx,
Q Q
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3 Elliptic equations PDE III 3.1 Inner regularity

We can use SOBOLEV’s inequality for v since n > 3, which then yields

2
2 2%(a+2) s 2*
ol g = [ 17520 ax) " < [uvgpas,
Q Q

and the proof is done. o

As a consequence, we have the following corollary:

Corollary 3.21. Let u € WY(Q) be a weak solution of (3.1) where A is symmetric and fulfils (3.2). Then

ue LfOC(Q) for every q > 1. Moreover, for every a > 0, every ball B,(y) C Q and every 0 < v’ < r, we have the

following reverse inequality:

_2 1 2 2 %
2% (a+2) (a+2)2% Ca+2 + 2) a2 a+t!
(/ |u| 2 dx) < (06—2) (/ |u|*+2 dx) , (3.9)
By (y) (r—r)a Br(y)

where c = c(n, A) > 0.
This is a reverse inequality in the sense that some L”-norm is controlled by some L7-norm, with p > g.

Proof. For any K compact subset of Q, there exists nx € C(Q2) with K| = 1. Starting with a = 0, one
can iterate (3.8) with = ng to get u € L?(;‘C(Q) for g :=2*k, k € N. Since LfOC(Q) - LfOC(Q), integrability
holds for all g > 1.

To derive (3.9), simply take a cut-off function nn € CZ°(Q) such that 1p,,) < n < T, with [Vq| <
2/(r — '), and apply Lemma 3.20. O

We are now in a position to prove Lemma 3.18, by iterating Corollary 3.21:

Proof of Lemma 3.18. We fix a ball B,(y) C Q and define (a;);ew as
@ =2(24/2) - 2.

We also define (7;);en:
7 7
ri==+—

2 i+l ’
Applying Corollary 3.21 with r = r;, ¥’ = r;41 and a = a; we get

v -2/Bi
Mi+1 < Cl/ﬁiﬁg/ﬁl (L)

i 2i+2 Mi,

. *
where we define ;11 1= ajy1 +2 = %ﬁi and

1/Bi
M; = (/ |1 |Pi dx) .
B(y,ri)

M1 < c¢iMp,

By iterating Corollary 3.21, we have

where lim;_,o, ¢; = Coo < +00. Since

1

1
i

sup |u| = lim / lul'dx| < lim M; < caoMp < ¢ (][ u? dx)
B, 2(y) 1= \JB,(y) i—o0 B, (y)

Lemma 3.18 can be generalized to weak subsolutions:
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3 Elliptic equations PDE III 3.1 Inner regularity

Lemma 3.22. Let u € W'%(Q) be a nonnegative weak subsolution of equation (3.1). Then u € L (Q). Moreover,
for every ball B,(y) ¢ Qand 0 < ¢ < 1, we have

c 3
supu<—n(][ uzdx) ,
Buy) — (1=0)2 \UB(»)

where ¢ = c(n,A) > 0.
Proof. O

By iterating Lemma 3.22, one can strengthen the result by lowering the exponent on the right-hand
side:

Lemma 3.23. Let u € W2(Q) be a nonnegative weak subsolution of equation (3.1). Then u € Lfgc(Q). Moreover,
for every ball B,(y) € Qand 0 < ¢ < 1, we have

1

q
°supu<;n(][ uqu) for0<g<2,
Bm(y) (1 - 0)6} Br(y)

q
. supu<c(][ uqu) forq>2,
Br/Z(y) B’(y)

where ¢ = c(n, A, q) > 0.
Proof. We proceed in two steps.

e We first assume g < 2. Take B,(y) € Q and some 0 < ¢ < 1. Define (0;);eny as

01‘1=1—

4

2i

so that o; varies monotonically from ¢ to 1 as i varies from 0 to co. We can now use Lemma 3.22
with 7 = gj117 and ¢ = 0;/0;4+1 and get

NI=

Cc
M;:= sup u < ———— ][ u®dx
qur(y) 1-— Oi 2 B‘7i+17(y)
Oi+1
1 2-q
2 2
Cc
<—— ][ uldx sup u ,
(1 — ‘7_1) : Boi1r(y) Boj,1r(y)
Oi+1
1
¢ ve)
< m uldx | M5 .
2 Bnle(y)

(1-2%)

Iterating this inequality, we get the result.

* Now assume q > 2. We start from the above result for g = 2:

1

2
sup u < c(f uzdx)
BUV(y) BV(y)

q
2

1
q
=c (][ u? dx) ,
B (y)
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3 Elliptic equations PDE III 3.1 Inner regularity

where the second factor is bounded by 1 and x x? is convex, so, by JENSEN’s inequality [7,

Theorem 2.2], we have:
1
q
<c (][ u dx) .
By (y)

This completes the proof.

Remark 3.24. On can derive a similar result in the case n = 2.

HarNAck’s inequality: inf Here, we prove the following:

Lemma 3.25. Let u € W'2(Q) be a nonnegative weak solution of (3.1), where A fulfils (3.2). Then there are
g=q(n,A)>0andc = c(n,A) > 0such that, for every ball B,(y) C Q, we have

q
inf u>c (][ uf dx) . (3.10)
Br/Z(y) B/ (y)
Remark 3.26. Given ¢ > 0, we can assume u > € in Q by replacing u by u + ¢.
The key point in the proof is the fact that log u is a function of bounded mean oscillation (BMO).

Lemma 3.27. Let u € W2(Q) be a weak solution of (3.1), where A fulfils (3.2). Suppose that u > ¢ in Q for
some ¢ > 0. Then, for any q > 0, there is a constant ¢ = c(n, A, q) > 0 such that the following holds:

inf u >c(][ u_qu)
Brpa(y) B.(y)

Proof. We claim that u~! is a subsolution of (3.1). Indeed, first it is easy to show that u~! € Hlloc(Q).
Second, for any nonnegative n € C°(Q), define ¢ := nu~2. We test (3.1) with ¢ to get

1

0= /g)(V(i),A(x)Vu}dx
= /Qu_Z(Vn,A(x)Vu) dx —Z/Qnu_?’Wu,AVu}dx
The last term is nonpositive, so we have
/Q(VU,A(x)VU) =- '/Q u_z(Vn, A(x)Vu)dx <0,

and u~! is a subsolution. We can then apply Lemma 3.23 with ¢ = % and get

inf u >c(][ u‘qu)
By 2(y) B, (y)

[T

Next, we show that log 1 is BMO:

Lemma 3.28. Let u € W'2(Q) be a weak solution of (3.1), where A fulfils (3.2). Suppose that u > ¢ in Q for
some ¢ > 0. Then, for every ball By, (y) C Q, we have

/ |Vol>dx < cr" 2,
Br(y)

where v =logu and ¢ = c(n, A) > 0.
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3 Elliptic equations PDE III 3.1 Inner regularity

Proof. Fixn € C(Q) and let ¢ = n?u~!. We again test (3.1) against ¢ and get that
0= /<V¢,A(x)Vu>dx
0
= —/ n*u~?(Vu, AVu) dx + 2/ nu~(Vn, A(x)Vu) dx
Q Q

which, after using the ellipticity and continuity of A as well as the CAUCHY-SCHWARZ inequality like

before, gives
/ |Vo*n? dx < 4A2/ |Vn|? dx .
Q Q

The result follows by choosing 1 € C°(Q) such that 1p, () <1 < 1p,( and |Vn| < 2/r. o

Proof of Lemma 3.25. On any ball By,(y) C €, we can use the POINCARE-WIRTINGER inequality (Theo-
rem A.3) and Lemma 3.28 to get

/ |o — vBr(y)lz dx < c(n) rZ/ Vo> < c(n,A) r*r"2,
B,(y) B, (y)

which yields
][ o — vBr(y)|2 dx <c(n,A).
Br(y)

Thus, v = logu € £2"(Q) = BMO(Q). We can then use the JoHN-NIRENBERG inequality Lemma 2.23,
which yields

][ exp (c1v = vp,yl) dx < c2
Br(y)

for c1 = c1(n, A) > 0and c; = ca(n, A) > 0. Then we have

][ uct dx][ u~rdx :][ exp (c1(v — v, (y))) dx][ exp (c1(vp, () — v)) dx
B:(y) B:(y) B (y) B.(y)

2
< (f exp (c1]v — vp,(y)l) dx)
B:(y)

< (Cz)2 .
This, together with Lemma 3.27, proves (3.10) with g = ¢;. This finishes the proof. m|
Proof of the HARNACK inequality Theorem 3.15. Simply combine Lemmata 3.23 and 3.25. ]

We are now able to conclude with the HOLDER continuity of solutions:

Proof of Theorem 3.17. Thanks to Lemma 3.18, we know that sup u and infu are locally bounded, so we
only need an estimate for the HOLDER semi-norm. We pick Br(xo) € Q and define m(xo, R) := infp, (x,) u
and M(xo, R) := supy,(,,) #- Next, we apply Theorem 3.15 to the (nonnegative) functions

M(xg,R)—u and u—m(xg,R),
and get

M(xo, R) —m(x0, R/2) < c(n, A) (M(xo0, R) — M(x0,R/2)) ,
M(x9,R/2) — m(xp,R) < c(n, A) (m(xg, R/2) — m(xp, R)),

where the constants are the same on both lines. Summing this up we obtain

OSCRy(xg) U + OSCRy (xg) U < c(n, A) (oscBR(xO) U — OSCBy »(xg) u) .
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3 Elliptic equations PDE III 3.1 Inner regularity

Hence, we have
-
OSCBR 2 (x0) U <2 OSCB(xo) U

for some «a € (0, 1] satifying
bt s cn,A)—1
“ e, A)+1°

Note that a does not depend on xy. We can iterate this estimate and find
0SCp _; (xg) U < 27" 0Scpy(xqy 1 forallj € N.
For r € (0, R], there is a unique jy € N such that
277IR < r < 27I0R,
from which we get
. r 4
0SCR, (xo) U < OSCB_j,  (xp) U g 27/ 0SCBp(xp) U S 2 (E) OSCBy (xo) U -

This gives the result, with a similar argument as in the proof of Theorem 3.2, p.18. m|
The theorem of DE GIORGI-NASH-MOSER can be generalized as follows:

Theorem 3.29. Let 1 < p < oo and let u € W'P(Q) be a weak solution of
—diva(Du,u,x) = ap(Du, u, x) inQ,
where a : R" X R X Q — R" and ag : R" X R X Q — R are such that:

* aand ay are CARATHEODORY functions, i.e. a : (z,u,x) > a(z,u,x) and ag : (z,u, x) — ao(z, u, x) are
measurable w.r.t. x for all (z,u) € R" X R and continuous w.r.t. (z, u) for almost all x € Q.

o There exists L > 1 such that
la(z,u, )] < A1+ [z

lao(z, u, x)] < A1+ [z
(a(z,u,x),z) > |z|’

hold for all (z, u) € R" X R and almost every x € Q.
Then, there exists 0 < a = a(n, p, A) such that u € CO*(Q).

With the following counter-example, we will see that the HOLDER continuity does not hold for every
exponent a > 0.

Example 3.30. We consider a ball By C R", where n > 2. Let u : By — R defined by u(x) = x'|x|*~1, for some
a € (0,1). Then we have the following:

e u € W'(By) N C(By),
o u ¢ COBBy) for B> a,

* u is a weak solution to the equation div(AVu) = 0 in By, where the matrix A has measurable, bounded,
elliptic coefficients defined by

1-a)(n—1+a)xix/

ii(x) = 81 +
a’(x) ani—2+a) [x]

for1<i,j<n.
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3 Elliptic equations PDE III 3.1 Inner regularity

Proof. The optimal Holder continuity of u with exponent « is clear. We have that |u| < [x|* € L1(B1) for
g = 0. u also has a classical derivative outside of the origin, which is given by

Dju(x) = S x|* 1 + (a = 1) xlad |x |23,

For1 < p <n/(1-a) < q, we have that |Dju(x)[P < C|x|@ € L1(B \ {0}), so that Du € L¥(B; \ {0}).
Let us now prove that {0} satisfies (2.1). Define the sequence (JJ]-)]-GN) c WL (R",[0,1]) as follows:

1 if x| < exp(—exp(j+ 1)),
lpj(x) = qlog(—log |x]) —j if exp(—exp(j+1)) < |x| < exp(—exp(j)),
0 if |x| > exp(—exp(j)).

These functions are rotationally symmetric with compact support in a ball whose radius vanishes as
j — oo. They are also equal to one close to the origin. We can compute

B exp(—exp(f))
/ |Dy;|" dx = c(n) |logr|”1f_1 dr
R" exp(—exp(j+1))

= c(n)(exp(j)l‘" —exp(j + 1)) =0 asj— .

This shows that [|{)j|lwii: — 0. By regularization by suitable mollifying kernels, we can obtain a
sequence of functions (¢;)jen € CZ°(R", [0, 1]) with the same properties. By HOLDER’s inequality, (2.1)
holds for all 4" € [1, n].

We can thus apply Lemma 2.9, from which we get that u € W'7(By) forall p € [1,n/(1 — @)), and its
weak derivative is given by the expression above.

It remains to check that u is a weak solution of the given equation. For x # 0, we have

1-

1., i), 1a=3
XX |X
-2+a T

Z @'l (x)Dju(x) = 6% x| + .

1<j<n

from which we get

y 1- i
D, Di(aTDju) = Difxl* ™ + -5 37 Dyl )

- n—-2+a £
1<i,j<n 1<isn
1-«a
1 a—3
= -1)————— 1 +n+a-
X |x| ((a 1)n—2+a( n+a 3))
=0.
Again using Lemma 2.9, we get that u is a weak solution in the whole of Bj. O
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4 Elliptic systems PDE III

4 Elliptic systems

We follow Beck [1, Section 4.1].
In this section, we consider the vectorial case, that is when u is vector-valued: u € W12(Q,R™) for
m > 1. Instead of equation (3.1), we have a system of equations:

div(A(Du(x), u(x), x)Du(x)) = D; (Aijt(Du(x),u(x),x)Djut)= > %(A;ft%uf)zo 4.1)
1<i,j<n
1<t<m

where
A= (AT) SRR X Qs RIX

st/ 1<s,t<m

As before, we assume A to meet the CARATHEODORY conditions, i.e. we assume A(-, -, x) to be continuous
for almost all x and A(z, u, -) to be measurable for all z, u.
Similarly to the scalar case, we have the notion of ellipticity for A:

Definition 4.1 (Ellipticity). We say that A is elliptic if there exists A > 0 such that the inequality

AR < Z Al(z,u,x) E ! 4.2)
1<i,j<n
1<s,t<m

holds for all £ € R™", all z, u and almost all x.

The condition (4.2) is also known as the LEGENDRE ellipticity condition, or very strong ellipticity con-
dition.
Definition 4.2 (Weak solution). We say that u € W'2(Q, R™) is a weak solution of (4.1) if the following holds
for all ¢ € Wy(Q, R™):
/ A?;(Du(x),u(x),x) DjutDi(j)s dx =0.
Q

4.1 Counterexamples to regularity

In this section, we will need Lemma 2.9.
The goal is to see that there exists discontinuous weak solutions and that this occurs also for relatively
simple linear systems. Let us start with the case m = n, () = By by considering the simple function

ula, x) == |x|™*x,

where o € [1,n/2). It is only discontinuous at the origin, and actually belongs to the Sobolev space
W12(B1, Q). Away from the origin, its weak derivative is given by

Diu®(a, x) = |x|7%0] — alx |74 2xix®

for 1 <i,s < n. We also have the following identities:

Z Diu'(a, x) = tr (Du(a, x)) = (n — a)|x|7%,
i=1
Z XDt (e, x) = (1 - a)|x*@,
i,s=1
Z (Dius(a,x))2 = |Du(a, x)|? = (n = 2a + a®)|x|72*.

i,s=1
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4 Elliptic systems PDE III 4.1 Counterexamples to regularity

4.1.1 The counterexample of DE GioRaI

We start by introducing a family of bilinear forms B(b1, b2) on R"*", which are thus defined:
.. B xixs xjxt
B;]t(bl’ bz, x) = (551561] + (bléf + sz) (bléj + bQW) ,

forx # 0,1 <1,j,s,t < n, where by, b, are real parameters. Note how the factors 67 and xixs appear
both in the definition of B and in the expression for D;u°. In the following, we write

(B(b1, by, ) &, E) = BL(br, by, ) EE = > BL(by, by, 0) T,
1<i,j<n
1<s,t<n

for all £,& € R™", From its definition, we see that B(by, by, x) is elliptic and bounded, i.e. for every
b1, by € R X R, there exists c(by, b2) > 0 such that the following inequality holds:

€% < (B(b1, b, x) &, &) < c(b1,bp)|Ef*, forall & e R, x #0. (4.3)

We can choose the parameters b1, b, in such a way that, foreach 1 < a < n/2, u(a, ) as defined above is
a weak solution of (4.1). Let us compute

; . .
. ; xlxs . x]xt
(B(b1, b2, x)Du(a, x))] = Dju' (@, x) + | by ; Dju'(a,x) + by 1‘;1 WDius(a,x)) (b16{ + bZW)

= [bi(bi(n —a) + ba(1 — @) + 1]|x| 6]
+ [ba(b1(n — @) + by(1 — @) — a]|x|*2xlxt .

Observe that .
D Dj(lx1*8)) = —alx|*2x!
i=1
and
n
Z D;j (|x|_“_2xjxt) =(n-1-a)x|"*2xt,
j=1
so that

n
> Dj(B(b1, by, x)Du(a, x))] = 0
=1
holds all x # 0 if @, by and b fulfil the equation
albi(bi(n —a) + br(1—a))+1]=(n—1—-a)[ba(b1(n — a) + b1(1 — a)) — a] (4.4)
& a?[(by + by)* + 1] — an[(by + bo)* + 1] + (1 — 1)by(by + byn) = 0. (4.5)
In this case, the function u(«, -) is a weak solution of (4.1) in By, by Lemma 2.9. For a = 1, this yields a
bounded, discontinuous weak solution, and for 1 < a < n/2, we even have unbounded, discontinuous

weak solutions. The choice b1 = n —2, by = n, with 1 < a < n/2 chosen according to (4.5) was proposed
by DE GIORGL:

Example 4.3 (DE GIORGI). Let n > 3and u : R" > By — R" be given by
u(a, x) = |x|"x  fora:= % (1 —((2n -2)* + 1)_%) .
Then u € WY2(By,R") is an unbounded weak solution of the elliptic system
div(B(n —2,n,x)Du(a)) =0 inBy.

Since B is bounded and elliptic with measurable entries, it satisfies all the conditions of Theorem 3.2.
The counterexample of DE GIoral then highlights the fact that, in the vectorial case, one cannot expect
HOLDER regularity of all (even bounded) weak solutions. One cannot even expect local boundedness, so
that Theorem 3.2 cannot be extended to functions with values in R"=" in the case n > 3.
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4 Elliptic systems PDE III 4.2 The hole-filling technique

4.1.2 The counterexample of Grusti and MiRANDA

The entries of B, as discussed in De GIORGI's counterexample, are discontinuous at the origin. Itis natural
to wonder what happens in the case where there coefficients a(u, x) are regular enough. One needs to
distinguish between two cases:

e the linear case, i.e. A(u,x) = A(x), in which case the continuity or smoothness of the coefficients
actually implies the continuity or smoothness of weak solutions. In other words, a weak solution
can only be discontinuous if the a is.

¢ the quasilinear case, where A is allowed to depend on u. Here, for a system with smooth coeffi-
cients, Grustt and MIRANDA constructed an irregular weak solution. Their counterexample, built
starting from Example 4.3, is an elliptic system whose coefficients depend smoothly on the solution
and which admits a (bounded) discontinuous weak solution.

In the following, we consider the function #(1, x) = x/|x|, which is a weak solution of the system
div(B(1,2/(n —2),x)Du) =0 in By,

where B is defined in Section 4.1.1, with by = 1,b, = 2/(n —2) and a = 1. Then, we can replace all
occurrences of x'/|x| in the expression for B by u’. Noting that |u(x)| = 1 for x # 0, we obtain

t

7

<ii y 4wl 4 wu
Bl (u) = 6567 + [0} + ot +
o1 () = Ot s n—21+|u|2)( Ion =21+ |ul?

forall1 <1i,j,s,t <nandall u € R". These coefficients are smooth in u, elliptic and bounded, and we
end up with the counterexample of Giusti and MIRANDA:

Exampled.4. Letn > 3andu : R" D By — R" be given by u(x) = x/|x|. Then,u € W“2(B1,R")NL*(B1,R")
and u is a discontinuous weak solution of the elliptic system

divBu)Du)=0 inBy.

Remark 4.5. In the case n = 2, all weak solutions are continuous, and their gradient has the same regularity of
the coefficients, see e.g. [1] and the next section.

4.2 The hole-filling technique

CacciorpoLr’s inequality may be used to obtain a decay estimate for the DirICHLET integral of weak solu-
tions of linear elliptic systems. Here we show how to do this by the hole-filling technique of WIDMAN (see
[15]). As a consequence we obtain HOLDER continuity for the solutions of elliptic systems with bounded
coefficients in dimension 2.
Let Q) ¢ R" with smooth boundary and u € Wlicz (3, R™) be a weak solution to the following elliptic
linear elliptic system:
- D, (4 D) =0 inQ, (4.6)
1<a,p<n

where the matrix A = (Af;.’g )ici iem € L®(Q, RMnxmn) gatisfies the condition (4.2). Take xg € Q,0 < R <

dist(xg, dQ). Test equation (4.6) against the function (u — 5)1]2, where £ € R™ and 1 is a nonnegative
cut-off function with 15, () < 17 < Tpg(xy) and [|D7llL> < 4/R. We get:

0= / AZ.ﬁDﬁujDa((ui - &) dx = / Aj.j.ﬁp,;uf[quaui +2n(u' — ENDyn)dx,
Q Q

2/\/n2|Du|2dx+2/AZ.ﬁnDﬁuj(ui—éi)Dandx,
Q Q
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4 Elliptic systems PDE III 4.2 The hole-filling technique

now, use the boundedness of A and get:

/q2|Du|2dx<c/n|Du||Dn||u—£|dx,
Q Q

where ¢ > 0 is independent of u and R. At this point, we use the properties of 1), the POINCARE inequality
and YOUNG's inequality with ¢ to bound the right-hand side from above by

1
—/nleulzdx+C—12 lu — &> dx. 4.7)
2 Jo R Br(x0)\B g (x0)

By choosing

&= udx,
BR(XO)\B%(XO)

we can use the following POINCARE-type inequality:

/ lu— &7 dx < czR2/ |Du|? dx (4.8)
BR(X(J)\B§ (x0) BR(XU)\Bg (x0)
to find

/ |Du|?dx < c/ |Dul?dx,
Bg(xo) BR(Xo)\Bg(«Yo)

where ¢ > 0, importantly, does not depend on R (nor u). We now fill the hole on the right-hand side by
adding c times the left-hand side to both sides, and get:

/ |Du|?dx < ¢ / |Du|?dx, 4.9)
Bg(xo) c+1 Br(x0)

k
/ |Du|?dx < ( < ) / |Du|? dx
B,—k(x0) c+1 Br(xo)

for all k > 1. This yields the existence of some a = a(A, A) > 0 such that

/ |Dul*dx < c1p** .
Bp(xo)

When 1 = 2, we can then use MORREY’s Theorem 2.20 to get u € C%%(Q, R™).

and then

Remark 4.6. (4.8) can be proven by choosing R = 1 and making use of the POINCARE-WIRTINGER inequality. The
general result is obtained by rescaling.

Another consequence of (4.9) is that entire solutions (4.6), i.e. solutions of (4.6) in all of R”, with finite
energy,

IDulE, = [ 1Dufdx <,
R”

are constant: for any ¢ > 0, there exists 7. > 0 such that

|Dull?

IDul? —e< |Du|? dx < L |Du|*dx < o 1
c L2(R")
Brg/Z(O)

C
L2(R") +1 B, (0) c+1 |

which can only hold (as ¢ — 0) if Du = 0 almost everywhere. Consider now an entire solution u of (4.6)
is dimension n = 2. Suppose it is globally bounded; then from (4.7) with £ = 0 we get

/ |[Du|?*dx < % |u|2dx<c1sup|u|2.
Br(0) R* JByk(0) R2

Hence, u has finite energy. Therefore we have the following
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4 Elliptic systems PDE III 4.2 The hole-filling technique

Theorem 4.7. Let u € Wlicz (R?) be a bounded solution of the elliptic system (4.6) with Q = R2. Then u is
constant.

Remark 4.8. If A is continuous (or constant), this result also holds if one weakens the ellipticity condition (4.2) a
little. See for example [4, Section 4.4].
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Notation

PDE III

Notation
n  the space dimension
B, the open ball centred at 0 and of radius r
u_, u,  min(0,u), max(0, u)
CZ(Q)  the space of smooth functions with compact support in Q
(-,-) the canonical scalar product in R"
a.e. almost everywhere, almost every
14 the indicator function of the set A
fa  the average of the function f over the set A, i.e. |A|™ fA fdx.
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A Appendix PDE III

A Appendix

1

Theorem A.1 (LeBesGUE differentiation theorem). Let f € L, _

(R™). Then, for almost every xo € R", we have

lim |f(x) = f(xg)|dx =0.
r\,O Br(xo) f f

Such a point xg is called a LEBESGUE point of f. In particular, it holds

lim flx)dx = f(xo).

™0 By (x0)
As a consequence, we have a version for LY spaces:

Theorem A.2 (LEBESGUE differentiation theorem for L? spaces). Let1 < p < coand f € LfOC(R”). Then, for
almost every xo € R", we have

lim [f(x) = f(xo)]Pdx =0.
™0 B, (x0) f f ’

Such a point xg is called a p-LEBESGUE point of f. In particular, it holds

Theorem A.3 (POINCARE-WIRTINGER). Let 1 < p < oo. For every bounded and connected domain () with the
extension property (e.g. with LipscHITZ boundary) there exists ¢ = c(n, p, Q) such that for each u € W (Q) we

have
/|u—uglpdx<c/|Du|pdx.
Q Q

When Q is a ball of radius r or a cube of side length r, we can take c(n, p, Q) = c(n, p)r?.

Proof. Assume that the assertion does not hold. We can then find a sequence (u;);en with

/|Duj|”dx—>0, (uj)a =0, /|u|pdx:1.
Q Q

By RELLICH's and BANACH-ALAOGLU’s theorems, we can extract a subsequence (1, )y such that

Ly wlp
Up U, Uy — U.

In particular, Du = 0, i.e. u is constant, ||u||;rq) = 1 and ug = 0, which is a contradiction. The claim on
¢ follows by scaling: consider w.l.o.g. u € WP (B,(0)), so that il : x > u(rx) € WP(B1(0)). The result
follows by writing the POINCARE-WIRTINGER inequality for #Z and using the identities

][ u(x)dx:][ fi(x)dx,
B,(0) B1(0)

/ () = g, 0P dx = 7 / 1(x) = fig, 0P dx,
B,(0) B1(0)

/ |Du(x)|pdx=r_dr”/ |Dii(x)|P dx .
B,(0)

B1(0)

O

Theorem A.4 (MARKOV's inequality). Let (X, L, u) be a measure space and a > 0. If f a measurable function
with values in R U {—o0, +00}, then the following inequality holds:

p({x e X:|f(x) > a}) < %'/Xlﬂdy.
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Proof. We have that
a - Tiex: fzay < If1 Vinex: |f (o120} /

which, after integration over X, yields

ap({rex |f(x)|>a})</X|f|‘ﬂ{xe><;|f(x>|>a}du</X|f|du. !

By the same token, we also have a corresponding result for 7, which is also known as the MARKOV-
CHEBYSHEV inequality:

Theorem A.5 (CHEBYSHEV's inequality). If f a measurable function with values in R U {—co, +o0}, then the
following inequality holds for all 0 < p < oo:

p({x e X:|f(x)| > a}) < alp/leV’dy.

Theorem A.6 (Layer Cake Representation, [7, Theorem 1.13]). Let v be a Borel measure on the real line such
that
o) ==v([0,1)) < oo,

forall t > 0. This way, ¢p(0) = 0, and ¢ is monotone nondecreasing, hence measurable.
Let (Q, , ) be a measure space and let f be a nonnegative, measurable function on Q. It then holds

[ ot uan= [ TulreQ s Fl) > 1) vld).
Q 0

For v(dt) = ptP~! dt, we have in particular that

[ uan= [ priutxen s @ > ar.
Q 0
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