ÜBUNGEN ZUR VORLESUNG DIFFERENTIALGEOMETRIE II

Abrufbar unter: https://gaspard.janko.fr/de

Blatt 2

Abgabe: Bis Montag, 2. Mai 2022, 15:00 Uhr

Aufgabe 2.1 (4 Punkte)

Sei $I \subset \mathbb{R}$ ein offenes Intervall, $\alpha : I \to \mathbb{R}^2$ eine reguläre C^2 -Kurve.

(i) Nehme an, dass $|\alpha(t)|$ an der Stelle t_0 ein lokales Maximum hat. Zeige, dass dann

$$|\kappa(t_0)| \ge \frac{1}{|\alpha(t_0)|}$$

gilt, wobei $\kappa:I\to\mathbb{R}$ die Krümmung von α ist.

(ii) Nehme nun an, dass für ein $s_0 \in I$ und ein r > 0 die Bedingungen

$$\alpha(s_0) = (r, 0), \quad \alpha'(s_0) = (0, 1), \quad \text{sowie} \quad \kappa(s_0) > \frac{1}{r}$$

gelten. Zeige, dass die Kurve α lokal um s_0 innerhalb der abgeschlossenen Kreisscheibe $\overline{B_r(0)}$ liegt.

Hinweis für beide Teilaufgaben: Untersuche die Funktion $\frac{1}{2}|\alpha(t)|^2$.

Aufgabe 2.2 (12 Punkte)

Eine Teilmenge $X \subset \mathbb{R}^n$ heiße *stückweise* C^1 -*zusammenhängend*, wenn es zu je zwei Punkten $p,q \in X$ eine stückweise C^1 -Kurve gibt, die in X verläuft und diese beiden Punkte verbindet. Wir schreiben $\Gamma(p,q)$ für die stückweisen C^1 -Kurven, die p und q verbinden, und $L(\gamma)$ für deren Länge.

- (i) Zeige, dass \mathbb{R}^n selbst und $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ stückweise C^1 -zusammenhängend sind. (1 Punkt)
- (ii) Zeige, dass auf einer C^1 -zusammenhängenden Menge $X \subset \mathbb{R}^n$ durch

$$d(p,q) = \inf_{\gamma \in \Gamma(p,q)} L(\gamma)$$

eine Metrik definiert ist, der sogenannte geodätische Abstand. (2 Punkte)

- (iii) Gib ein Beispiel, bei dem das Infimum nicht angenommen wird. (2 Punkte)
- (iv) Beweise, dass im Fall $X = \mathbb{R}^n$ ein Geradenstück einen Minimierer für obige Definition der Metrik liefert. Zeige außerdem, dass die so gewonnene Metrik mit der euklidischen Standardmetrik zusammenfällt. (2 *Punkte*)
- (v) Zeige, dass auch im Fall $X = \mathbb{S}^{n-1}$ ein Minimierer für das Infimum existiert. (4 Punkte)
- (vi) Nehme an, die Erdoberfläche sei eine Kugel mit Radius $r=6,371\cdot 10^6\mathrm{m}$. Bestimme den Abstand vom Konstanzer Münster (47°39′48″ nördlicher Breite, 9°10′34″ östlicher Länge) zum Nordpol. (1 Punkt)