Übungen Lineare Algebra und Analytische Geometrie Blatt 3 21.3.2024

11. Welche der Matrizen

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

sind zueinander ähnlich? Hinweis: Untersuchen Sie SA = BS etc.

- 12. (a) Seien $A = (a_{ij}) \in \mathbb{C}^{m \times n}$, $B = (b_{ij}) \in \mathbb{C}^{n \times \ell}$. Zeigen Sie $(AB)^* = B^*A^*$ nur unter Verwendung der Schreibweise $M = (m_{ij})$ für Matrizen.
 - (b) Sei $A \in \mathbb{C}^{n \times n}$ invertierbar. Zeigen Sie, daß dann auch A^* invertierbar ist und $(A^*)^{-1} = (A^{-1})^*$ gilt.
- 13. (a) Seien V_1 und V_2 zwei reelle Vektorräume. Sei $\langle \cdot, \cdot \rangle_2 : V_2 \times V_2 \to \mathbb{R}$ ein inneres Produkt auf V_2 und $f: V_1 \to V_2$ eine lineare Abbildung. Wir definieren

$$\langle \cdot, \cdot \rangle_1 : V_1 \times V_1 \to \mathbb{R}, \quad \langle x, y \rangle_1 := \langle f(x), f(y) \rangle_2.$$

Zeigen Sie: $\langle \cdot, \cdot \rangle_1$ ist ein inneres Produkt genau dann, wenn f injektiv ist.

(b) Wir definieren die Abbildung

$$\langle \cdot, \cdot \rangle : \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}, \quad \langle A, B \rangle := \operatorname{Spur}(A^{\top}B).$$

Finden Sie einen Ausdruck für $\langle A, B \rangle$ nur in Termen der Matrixelemente und beweisen Sie mithilfe von (a), daß $\langle \cdot, \cdot \rangle$ ein inneres Produkt auf $\mathbb{R}^{n \times n}$ ist.

14. Berechnen Sie jene Punkte auf der Geraden

(a)
$$g: -x + 2y = 4$$
, (b) $h: \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \lambda \in \mathbb{R}$,

die im normierten Raum $(\mathbb{R}^2, \|\cdot\|_1)$ vom Punkt P = (0, -1) minimalen Abstand haben.

15. Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Vektorraum und $\| \cdot \|$ die induzierte Norm auf V. Weiters seien $a, b \in V$, $a \neq b$ fest, $c = \frac{1}{2}(a+b)$, und $x \in V$ beliebig. Zeigen Sie folgende Äquivalenzen und geben Sie für $V = \mathbb{R}^2$ mit dem Standardskalarprodukt eine geometrische Interpretation:

(a)
$$\langle x - a, x - b \rangle = 0 \iff ||x - c|| = \frac{1}{2} ||b - a||.$$

(b)
$$||x - a|| = ||x - b|| \iff \langle x - c, b - a \rangle = 0.$$