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Abstract. This paper is dedicated to the rigorous numerical analysis of a Mul-
tiscale Finite Element Method (MsFEM) for the Stokes system, when dealing

with highly heterogeneous media, as proposed in B.P. Muljadi et al., Non-

conforming multiscale finite Element method for Stokes flows in heterogeneous
media. Part I: Methodologies and numerical experiments, SIAM MMS (2015),

13(4) 1146-–1172. The method is in the vein of the classical Crouzeix-Raviart

approach. It is generalized here to arbitrary sets of weighting functions used
to enforce continuity across the mesh edges. We provide error bounds for a

particular set of weighting functions in a periodic setting, using an accurate

estimate of the homogenization error. Numerical experiments demonstrate an
improved accuracy of the present variant with respect to that of Part I, both

in the periodic case and in a broader setting.

1. Introduction. We consider the Stokes problem in the perforated domain Ωε :=
Ω \Bε, Ω ⊂ R2: find u : Ωε → R2 and p : Ωε → R, solution of

−∆u+∇p = f on Ωε , (1)

div u = 0 on Ωε , (2)

u = 0 on ∂Ωε , (3)

where f : Ω→ R2 is a given function, assumed sufficiently regular on Ω.

We are interested in the situations where the perforations Bε have a complex
structure, making a direct numerical solution of problem (1)–(3) very expensive.
Typically, Bε is assumed to be a set of obstacles of average size and average inter-
obstacle distance ε � diam(Ω), so that the mesh resolving all the features of the
perforated domain Ωε is too complex. Our goal is to devise an efficient numerical
method that employs a relatively coarse mesh of size H ≥ ε (or even H � ε).
We borrow the concept of Multiscale Finite Element Method (MsFEM) [25, 16],
where the multiscale basis functions are pre-calculated on each cell of the coarse
mesh, using a local sufficiently fine mesh, to represent a typical behavior of the

2020 Mathematics Subject Classification. Primary: 65N12; Secondary: 65N30, 35J15.
Key words and phrases. Crouzeix-Raviart Element, Multiscale Finite Element Method, Stokes

Equations, Homogenization.
∗Corresponding author: Alexei Lozinski.

1

http://dx.doi.org/10.3934/dcdsb.2023178
mailto:gaspard@math.janko.fr
mailto:alexei.lozinski@univ-fcomte.fr


2 GASPARD JANKOWIAK AND ALEXEI LOZINSKI

microscopic structure of the flow. The global approximation to the solution of the
problem in Ωε is then constructed as the Galerkin projection on the space spanned
by these basis functions.

The particular variant of MsFEM pursued in this article is inspired by classical
non-conforming Crouzeix-Raviart finite elements [11]. The idea of Crouzeix-Raviart
MsFEM was first developed in [29, 30] for diffusion problems either with highly os-
cillating coefficients or posed on a perforated domain. It was also extended to
advection-diffusion problems in [12] and to Stokes equation in the Part I of the
present paper [32]. In the construction of Crouzeix-Raviart multiscale basis func-
tions, the conformity between coarse elements is not enforced in a strong sense. The
basis functions are required to be continuous only in a weak (finite element) sense,
i.e. merely the averages of the jumps of these functions vanish at coarse element
edges. The boundary conditions at the edges are then provided by a natural de-
composition of the entire functional space into the sum of unresolved fine scales and
the finite set of multiscale base functions. In the present article, we generalize this
idea by introducing the weights into the averages over the edges in the definition
of the functional spaces. This additional flexibility allows us to construct a more
accurate variant of Crouzeix-Raviart MsFEM, as confirmed by the numerical exper-
iments at the end of this article. Moreover, we are now able to provide a rigorous
a priori error bounds in terms of H and ε in a periodic setting, i.e. when Bε is
populated by the same pattern repeated periodically on a grid of size ε. Note that
a generalization to higher order weights (without a theoretical error analysis) as
well as to the Oseen problem, and the corresponding implementation in TrioCFD
(http://triocfd.cea.fr/) is presented in [18].

Let us mention briefly other approaches which can be applied to similar prob-
lems: wavelet-based homogenization method [13], variational multiscale method
[33], equation-free computations [28], heterogeneous multiscale method [14] and
many others. For viscous, incompressible flows, multiscale methods based on ho-
mogenization theory for solving slowly varying Stokes flow in porous media have
been studied in [9, 8]. Returning to the MsFEM-type approaches, we should men-
tion a big amount of work on the oversampling approach, first introduced in the
original work [25] to provide a better approximation of the edge boundary condition
of the multiscale basis functions. Oversampling here means that the local problem
in the coarse element is extended to a domain larger than the element itself, but
only the interior information would be communicated to the coarse scale equation.
Various extensions of the sampled domain lead to various oversampling methods, cf.
[16, 10, 23, 15]. Although an oversamping-based MsFEM for the Stokes equation
is a possible direction of future research, we choose not to introduce the oversam-
pling in this article. This is motivated by the numerical comparison between the
Crouzeix-Raviart MsFEM and oversampling based approaches in [30] for diffusion
problems on perforated domains demonstrating that the Crouzeix-Raviart MsFEM
outperforms all the other variants.

This paper is organized as follows. The Crouzeix-Raviart MsFEM is presented
in Section 2. We recall there namely the construction from Part I [32] and explain
and motivate some modifications and generalization we make to this construction
here. We also announce there the main theoretical result of the paper: an a priori
error bound in the case of periodic perforations. The rest of the paper (with the
exception of some numerical experiments) is constrained to this periodic setting.

http://triocfd.cea.fr/
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Section 3 deals with the homogenization theory. We prove there an estimate of the
error committed by the approximation of the Stokes equations with the Darcy ones.
Section 4 deals with some technical lemmas. Section 5 presents the proof of the
MsFEM error bound. Finally, the numerical tests are reported in Section 6.

2. MsFEM à la Crouzeix-Raviart. We assume henceforth that Ω is a polygonal
domain. We define a mesh TH on Ω, i.e. a decomposition of Ω into polygons, each
of diameter at most H, and denote EH the set of all the edges of TH , E intH ⊂ EH the
internal edges and E(T ) the set of edges of T ∈ TH . Note that we mesh Ω and not
the perforated domain Ωε. This allows us to use coarse elements (independently of
the fine scales present in the geometry of Ωε) and leaves us with a lot of flexibility:
some mesh nodes may be in Bε, and likewise some edges may intersect Bε.

We assume that the mesh does not have any hanging nodes, i.e. each internal
edge is shared by exactly two mesh cells. In addition, TH is assumed to be quasi-
uniform in the following sense: fixing a polygon T ⊂ R2 as reference element (one
can also have a finite collection of reference elements), for any mesh element T ∈
TH , there exists a smooth invertible mapping K : T → T such that ‖∇K‖L∞ ≤
CH, ‖∇K−1‖L∞ ≤ CH−1, C being some universal constant independent of T ,
which we will refer to as the regularity parameter of the mesh. To avoid some
technical complications, we also assume that the mapping K is affine on every edge
of ∂T . These assumptions are obviously met by a triangular mesh satisfying the
minimum angle condition (see e.g. [6, Section 4.4]), but our approach carries over to
quadrangles, which are in fact used for our numerical computations, or to general
polygonal meshes (in the flavor of Virtual Finite Elements [4]).

We shall use the usual notations L2(ω), Hk(ω) for Sobolev spaces on a domain
ω. We shall also denote L2

0(ω) =
{
p ∈ L2(ω) :

∫
ω
p = 0

}
and H1

0 (ω) = {u ∈ H1(ω) :

u|∂ω = 0}. We shall implicitly identify the functions in H1
0 (Ωε) with those in

H1(Ω) vanishing on Bε. The weak form of (1)–(3) can be written as follows: find
(u, p) ∈ H1

0 (Ωε)2 × L2
0(Ωε) such that

c((u, p), (v, q)) =

∫
Ω

f · v, ∀(v, q) ∈ H1
0 (Ωε)2 × L2

0(Ωε)

with

c ((u, p), (v, q)) :=

∫
Ωε
∇u : ∇v −

∫
Ωε
p div v −

∫
Ωε
q div u . (4)

We shall also need the broken Sobolev spaces of the type

H1(TH) =
{
u ∈ L2(Ω) : u|T ∈ H1(T ) for any T ∈ TH

}
.

The partial derivatives ∂iu of a function u from H1(TH) will be understood in the
piecewise sense, i.e. ∂iu will be assumed to coincide on any mesh cell T ∈ TH with
the distributional derivative of u|T in D(T ). In particular, the H1 semi-norm of a

function u ∈ H1(TH) space will be understood as |u|H1(Ω) =
(∑

T∈TH |u|
2
H1(T )

)1/2

.

In the sequel, for the sake of simplicity, we will denote the norms on vector valued
spaces in the same manner as for scalar values spaces.

The idea of the Multiscale Finite Element Method (MsFEM) à la Crouzeix-
Raviart is to require the continuity of the finite element functions, which here are
highly oscillatory, in the sense of some weighted averages on the edges. We have
adapted this approach to the Stokes equation in [32] using the simplest possible
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set of weights on the edges. We are now going to recall the main ideas of this
construction and to generalize it to arbitrary weighting functions.

2.1. Functional spaces. Let us fix a positive integer s and associate some vector-
valued functions ωE,1, . . . , ωE,s : E → R2 to any edge E ∈ EH . As in [32], we first
introduce the extended velocity space

V extH :=

{
u ∈ L2(Ω)2 such that u|T ∈ H1(T )2 for any T ∈ TH ,
u = 0 on Bε, and

∫
E

[[u]] · ωE,j = 0 for all E ∈ EH , j = 1, . . . , s

}
,

where [[u]] denotes the jump of u across an internal edge and [[u]] = u on the
boundary ∂Ω. The idea behind this space is to enhance the natural velocity space
H1

0 (Ωε)2 so that we have at our disposal the vector fields discontinuous across the
edges of the mesh. Indeed, our aim is to construct a nonconforming approximation
method, where the continuity of the solution on the mesh edges will be preserved
only for the weighted averages. We shall need some technical requirements on the
weights:

Assumption 2.1. For any E ∈ EH , span(ωE,1 . . . , ωE,s) 3 nE, the unit normal to
E.

Note that the original construction from [32] is recovered by setting the weights

as s = 2, ωE,1 = e1 =

(
1
0

)
, ωE,2 = e2 =

(
0
1

)
on all the edges. Assumption 2.1

is then trivially verified. This will be also the case for another choice of the weights
introduced later in this article.

The following assumptions deal not only with the weights but also with the
manner in which the holes Bε intersect the mesh cells.

Assumption 2.2. Take any T ∈ TH and any real numbers cE1 , . . . , c
E
s on all the

edges E composing ∂T . There exists v ∈ H1(T )2 vanishing on T ∩Bε and such that∫
E
v · ωE,i = cEi , i = 1, . . . , s for all the edges E.

Assumption 2.3. For any T ∈ TH , let C1, . . . , Cn be the connected components
of T ∩ Ωε and choose any real numbers c1, . . . , cn with

∑n
i=1 ci = 0. There exists

w ∈ H1(T )2 vanishing on T ∩ Bε and such that
∫
∂Ci

w · n = ci, i = 1, . . . , n and∫
F
w · ωF,j = 0 for all the edges F of T and j = 1, . . . , s.

Remark 1.

1. Assumption 2.2 above will be valid provided the weights ωE,1, . . . , ωE,s are
linearly independent as functions on E \Bε. In particular, no edge E should
be covered completely by Bε. Note that the situations where some edges
E are covered by Bε can be easily handled by a slight modification of the
forthcoming MsFEM method, cf. Lemma 2.4: one should simply ignore such
edges when constructing the MsFEM basis functions.

2. Assumption 2.3 on the other hand may impose some restrictions on the choice
of the mesh with respect to the perforations. However, it will be satisfied in
most typical situations. First of all, we emphasize that this Assumption is
void if T ∩Ωε is connected (one has then n = 1, c1 = 0, and one puts w = 0).
Moreover, the required function w can be easily constructed if, for example, a
mesh element T is split by Bε into two connected components C1, C2 and one
of its edges, say E, is split into two non-empty connected components, say
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Ci0

E

T

Figure 1. A typical situation where Assumption 2.3 does not
hold. The fluid domain T ∩ Ωε is in white and the edge E is
in bold.

EC1
, EC2

: one can prescribe then the required non-zero averages of normal
fluxes of w on EC1

and EC2
while letting w · n equal to 0 on the remaining

parts of the boundary of C1 and C2. Similar constructions can be imagined
in other more complicated situations.

3. A situation where Assumption 2.3 is not fulfilled is illustrated in Fig. 1. We
have there n = 3 connected components (it can be generalized to any n ≥ 3)
and one of them, say the connected component Ci0 , intersects exactly one
edge E, which itself does not intersect any other connected component: there
is 1 ≤ i0 ≤ n with E ∩ (∪iCi) = Ci0 and Ci0 ∩ ∂T ⊂ E. One can then
choose ci0 > 0. Any w fulfilling the requirements is such that

∫
∂Ci0

w · n =∫
E∩Ci0

w · n =
∫
E
w · n = ci0 > 0. This is clearly incompatible with the

condition
∫
E
w · ωE,j = 0 for all j, in view of Assumption 2.1.

We introduce now the combined velocity-pressure space Xext
H = V extH × M ,

with M = L2
0(Ωε) :=

{
p ∈ L2(Ωε) s.t.

∫
Ωε
p = 0

}
. The space Xext

H is then de-
composed into coarse and fine components:

Xext
H = XH ⊕X0

H , (5)

where X0
H = V 0

H ×M0
H is the space of unresolved fine scales with

V 0
H :=

{
u ∈ V extH :

∫
E

u · ωE,j = 0 ∀E ∈ EH , j = 1, . . . , s

}
,

M0
H :=

{
p ∈M :

∫
T∩Ωε

p = 0 ∀T ∈ TH
}
,

and XH is chosen as the “orthogonal” complement of X0
H with respect to c, the

natural bilinear form (4) associated to the Stokes problem:

(~uH , pH) ∈ XH ⇐⇒ c((~uH , pH), (~v, q)) = 0, ∀(~v, q) ∈ X0
H . (6)

We have put the word “orthogonal” in quotes since the bilinear form c is not a
scalar product. We shall see however that the subspace XH ⊂ Xext

H defined by
(6) is finite-dimensional and forms indeed a direct sum with X0

H , as announced in
(5). This will be clear from the forthcoming Lemma 2.4. The space XH in (6)
will be referred to as the Crouzeix-Raviart MsFEM space and used to construct an
approximation method.

An examination of the orthogonality relation (6) permits us to construct a basis
of XH in a localized manner, i.e. the support of every basis functions will cover a
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small number of mesh cells, as in the standard finite element shape functions. To
this end, we define the functional spaces MH ⊂M and VH ⊂ V extH as

MH = {q ∈ L2
0(Ωε) such that q|T∩Ωε = const, ∀T ∈ TH} , (7)

VH = span{ΦE,i, E ∈ E intH , i = 1, . . . , s} , (8)

where ΦE,i for any E ∈ E intH , i = 1, . . . , s is the vector-valued function on Ω,
vanishing outside the two mesh cells T1, T2 adjacent to E, and defined on these two
cells together with the accompanying pressure πE,i as the solution to the following
problems: for k = 1, 2, find ΦE,i ∈ H1(Tk)2 s.t. ΦE,i = 0 on Tk ∩ Bε, πE,i ∈
L2

0(Tk ∩ Ωε), and λF,j ∈ R for all F ∈ E(Tk), j = 1, . . . , s such that∫
Tk∩Ωε

∇ΦE,i : ∇v −
∫
Tk∩Ωε

πE,i div v −
∫
Tk∩Ωε

q div ΦE,i

+

s∑
j=1

∑
F∈E(Tk)

λF,j

∫
F

v · ωF,j = 0 , (9)

∫
F

ΦE,i · ωF,j = δijδEF :=

{
δij , F = E
0, F 6= E

, (10)

for all v ∈ H1(Tk ∩ Ωε)2 s.t. v|Tk∩Bε = 0, q ∈ L2
0(Tk ∩ Ωε), and for all F ∈ E(Tk),

j = 1, . . . , s. The unknowns λF,j in (9) serve as the Lagrange multipliers for the
constraints (10).

Remark 2. In the strong form, problem (9) can be rewritten as: find ΦE,i and
πE,i that solve on Tk, k = 1, 2

−∆ΦE,i +∇πE,i = 0, on Ωε ∩ Tk,
div ΦE,i = const, on Ωε ∩ Tk,

ΦE,i = 0, on Bε ∩ Tk,
∇ΦE,in− πE,in ∈ span{ωF,1, . . . , ωF,s} on F ∩ Ωε, for all F ∈ E(Tk),∫

F

ΦE,i · ωF,j = δijδEF for all F ∈ E(Tk), j = 1, . . . , s ,∫
Ωε∩Tk

πE,i = 0.

The functions (ΦE,i, πE,i), together with the piecewise constants for the pressure,
form indeed a basis of the Crouzeix-Raviart MsFEM space XH . We make this
precise in the following

Lemma 2.4. Under Assumptions 2.1–2.3 the problems above are well posed and
the MsFEM space XH from (6) can be identified with

XH = span{(uH , πH(uH) + p̄H), uH ∈ VH , p̄H ∈MH} , (11)

where πH : VH → span{πE,i, E ∈ E intH , i = 1, 2} ⊂M0
H is the linear mapping such

that πH(ΦE,i) = πE,i for all E ∈ E intH , i = 1, 2.

Proof. The well-posedness of problem (9) on any mesh element Tk (denoted simply
by T in the sequel of this proof) follows from Assumption 2.2, which ensures that
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one can prescribe the needed values to
∫
F

ΦE,i · ωF,j on all the edges F of element
Tk, and from the following inf-sup condition

inf
q∈L2

0(T∩Ωε)
sup

v∈V∫
0(T )

∫
T∩Ωε

q div v

‖q‖L2(T∩Ωε)|v|H1(T )
> 0 , (12)

with

V∫ 0(T ) = {v : H1(T )2 :

∫
E

v = 0, ∀E ∈ E(T ) and v = 0 on Bε ∩ T}.

In turn, property (12) can be established thanks to Assumption 2.3. Indeed, this
property is evident if T ∩ Ωε is connected: given q ∈ L2

0(T ∩ Ωε) one takes then
v ∈ H1

0 (T ∩ Ωε)2 ⊂ V∫ 0(T ) (assuming that v is extended by zero on Bε) such that

div v = q and the H1 norm of v is bounded by the L2 norm of q (the existence of
such a function is assured by [20, Corollary 2.4, p.24]). If not, recall the connected
components C1, . . . , Cn of T ∩ Ωε, denote ci =

∫
Ci
q for a given q ∈ L2

0(T ∩ Ωε),

observe
∑n
i=1 ci = 0 and consider the function w from Assumption 2.3. We have

w ∈ V∫ 0(T ) and ∫
Ci

divw =

∫
∂Ci

w · n = ci =

∫
Ci

q .

One can now choose w(i) ∈ H1
0 (Ci)

2 on each component Ci such that divw(i) =
q − divw on Ci. Such functions exist thanks to the above mentioned result from
[20] since

∫
Ci

(q − divw) = 0. Setting v = w + w(i) on Ci and v = 0 on Bε gives

v ∈ V∫ 0(T ) such that div v = q. By construction, the H1 norm of v is bounded by

the L2 norm of q.

To prove the other statements of the proposition one can easily adapt the proofs
of Lemmas 3.1, 3.2 and Remark 3.3 in [32] with obvious modifications induced by the
more general constraints

∫
E

[[u]] · ωE,j = 0, replacing
∫
E

[[u]] = 0 in the definition
of V extH . We shall not go into the details of these modifications for the sake of
brevity. We emphasize only that Assumption 2.1 is indeed necessary to conclude.
For example, the proof that

∫
Ωε
p̄H div v = 0 for any p̄H ∈ MH and v ∈ V 0

H , cf.
Lemma 3.1 in [32], goes like this∫

Ωε
p̄H div v =

∑
T∈TH

p̄H |T
∫
T

div v =
∑
T∈TH

p̄H |T
∫
∂T

v · n = 0 .

The last equality above is justified by span(ωE,1 . . . , ωE,s) ⊃ nE on any edge E of
T .

From now on, we can think of VH as the finite dimensional space defined by
(8). From this construction, we see easily that div(VH) ⊂ MH . Indeed, div(vH) is
piecewise constant on TH for any vH ∈ VH and∫

Ωε
div vH =

∑
T∈TH

∫
T

div vH =
∑
E∈EH

∫
E

[[vH · nE ]] = 0 .

In fact, div(VH) = MH as will be shown in Lemma 2.5.
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2.2. The MsFEM approximation. The approximation of the solution to the
Stokes problem (1)–(3) now reads: find uH ∈ VH and pH ∈MH such that∫

Ωε
∇uH : ∇vH −

∫
Ωε
pH div vH =

∫
Ωε
f · vH ∀vH ∈ VH , (13)∫

Ωε
qH div uH = 0 ∀qH ∈MH , (14)

Existence and uniqueness of the solution to (13)–(14) follows from the standard
theory of saddle-point problems provided the pair of spaces VH ×MH satisfies the
inf-sup property. This is indeed the case, as shown in the next lemma.

Lemma 2.5. Assume that the continuous velocity-pressure inf-sup property holds
on Ωε with a constant β > 0, i.e.

inf
p∈L2

0(Ωε)
sup

v∈H1
0 (Ωε)2

∫
Ωε
p div v

‖p‖L2(Ωε)|v|H1(Ωε)
≥ β .

Then, the discrete inf-sup property holds on VH×MH with the same constant β > 0:

inf
pH∈MH

sup
vH∈VH

∫
Ωε
pH div vH

‖pH‖L2(Ωε)|vH |H1(Ωε)
≥ β .

More precisely, for any pH ∈MH there exists vH ∈ VH such that

div vH = pH on T ∩ Ωε, ∀T ∈ TH and |vH |H1(Ωε) ≤
1

β
‖pH‖L2(Ωε) .

Proof. Take arbitrary pH ∈MH and v ∈ H1
0 (Ωε)2 such that

div v = pH on Ωε and |v|H1(Ωε) ≤
1

β
‖pH‖L2(Ωε) .

Decompose v = vH + v0
H with vH ∈ VH and v0

H ∈ V 0
H . Assuming that v is extended

by 0 inside Bε, this implies
∫
E
v · nE =

∫
E
vH · nE on any E ∈ EH so that for any

T ∈ TH ∫
T∩Ωε

div vH =

∫
∂T

vH · n =

∫
∂T

v · n =

∫
T∩Ωε

div v =

∫
T∩Ωε

pH .

Since both div vH and pH are piecewise constant on TH , we conclude div vH = pH .

Moreover,
∫

Ωε
∇(v − vH) : wH = 0 for any wH ∈ VH by the construction of VH ,

cf. the orthogonality between XH and X0
H . Hence |vH |H1 ≤ |v|H1 which proves the

Lemma.

In fact, the velocity uH given by (13)–(14) can be characterized in a simpler
manner: find uH ∈ ZH such that∫

Ωε
∇uH : ∇vH =

∫
Ωε
f · vH , ∀vH ∈ ZH , (15)

where ZH is the divergence free subspace of VH :

ZH = {uH ∈ VH such that div uH = 0 on any T ∈ TH} . (16)

This fact will be useful in the proof of the error estimate.
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Remark 3. Our method can be easily adapted to non-homogeneous boundary
conditions on the outer boundary ∂Ω, i.e. when (3) is replaced with

u = g on ∂Ω and u = 0 on ∂Bε . (17)

One should then add the following equations on all the mesh edges E lying on ∂Ω:∫
E

uH · ωE,j =

∫
E

g · ωE,j , j = 1, . . . , s.

2.3. Possible choices of weighting functions. We now consider two choices of
weighting functions, leading to 2 variants of multiscale spaces:

CR2 : s = 2, ωE,1 = e1, ωE,2 = e2, (18)

CR3 : s = 3, ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , (19)

for any E ∈ EH . Here nE denote again a unit vector normal to E and ψE a linear
polynomial on E such that

∫
E
ψE = 0. The actual choice of nE and ψE should be

made once for all, but is arbitrary otherwise.

ux

2.7224

2.5642

2.4061

2.2480

2.0898

1.9317

1.7736

1.6154

1.4573

1.2992

1.1410

0.9829

0.8247

0.6666

0.5085

0.3503

0.1922

0.0341

­0.1241

­0.2822

­0.4403

­0.5985

­0.7566

ux

6.8498

5.7809

4.7120

3.8602

3.7959

3.7793

3.6543

3.6431

2.9257

2.5743

2.2592

1.5054

1.3441

1.0824

0.9007

0.6003

0.4365

0.0526

­0.6323

­1.7012

­2.7701

­3.8390

­4.9078

Figure 2. Basis function combination ΦLR = ΦL,1 + ΦR,1. Left:
ΦLR computed with CR2 basis functions (18); Right: ΦLR com-
puted with CR3 basis functions (19). We show the stream-lines
associated to these vector-valued functions. The colors represent
their x-components.

We recognize the space CR2 as being the MsFEM space from the Part I of the
present series [32] where it was successfully tested numerically. It can however be
quite inefficient in certain situations, especially when some of the mesh cells contain
a lot of densely packed holes. Consider, for example, a geometrical configuration as
in Fig. 2. We represent there a mesh cell (a square), say T ∈ TH , which happens
to contain 9 round holes. We plot on the left the sum of basis functions ΦLR :=
ΦL,1 +ΦR,1 from the CR2 basis associated to the two vertical sides of T , L being the
left side and R the right side of T and assuming that the unit normal is chosen in
the direction e1 on both edges L and R. We thus impose the flow to be (in average)
in e1 direction on both vertical sides of T and to vanish (in average again) on both
horizontal sides. We consider a sum of basis functions, rather than a basis function
alone, since div(ΦLR) = 0 on T as

∫
T

div ΦLR =
∫
R

ΦR,1 · e1 −
∫
L,1

ΦL · e1 = 0,

while
∫
T

div ΦL,1 = const 6= 0 there. The vector field ΦLR should model, roughly
speaking, the flow from left to right inside T . However, the actual behavior of ΦLR
is quite different and counter-intuitive: the fluid seems to turn around the corners
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of the cell T , which have of course no physical meaning, and barely penetrates
inside T between the obstacles. One concludes thus that the CR2 space VH cannot
be used in general to construct a reasonable approximation of the solution to the
Stokes problem. Turning to the alternative CR3 space, we plot at Fig. 2 on the
right the same linear combination ΦL,1 + ΦR,1 of basis functions. We see now that
their behavior is at least visually correct. The superiority of CR3 over CR2 will be
further confirmed by other numerical experiments in Section 6. Moreover, we shall
be able to prove an error estimate for the MsFEM approximation using the CR3

basis functions, cf. Theorem 2.7 below and its proof in Section 5.

Remark 4. Following [30], one could think that the drawbacks of CR2 basis func-
tions could be fixed if one added appropriate multi-scale bubble functions to the
CR2 MsFEM space. One could thus introduce for any T ∈ TH the vector-valued
velocity bubble ΨT,i with associated pressure θT,i, i = 1, 2 with ΨT,i, θT,i supported
in T and solution to

−∆ΨT,i +∇θT,i = ei on Ωε ∩ T,
div ΨT,i = 0 on Ωε ∩ T,

ΨT,i = 0 on Bε ∩ T,
∇ΨT,in− θT,in = const on F ∩ Ωε for all F ∈ E(T ),∫

F

ΨT,i = 0 for all F ∈ E(T ),∫
Ωε∩T

θT,i = 0 .

We plot such a function at Fig. 3 in a setting similar to that of Fig. 2 and
observe that it could indeed restore the typical flow features lacking in the CR2

basis functions. However, CR2 MsFEM space, even enhanced with such bubble
functions, would perform poorly with respect to the non-conformity error inherent
to our method, cf. Remark 6. This is why we have chosen not to consider the
bubble functions in the present article, contrary to [30].

More general choices for the weighting functions, using higher order polynomials
and eventually introducing some appropriate bubble functions, are proposed and
tested numerically in [18, 19].

Figure 3. Bubble function ΨT,1 on the same mesh cell T as at Fig. 2.
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2.4. Periodic case. The theoretical study of the MsFEM method introduced above
will be performed only in the case of periodic perforations. Moreover, we need to
be careful about the introduction of perforations near the boundary ∂Ω. We adopt
thus the following set of hypotheses.

Assumption 2.6. Ω ∈ R2 is a bounded simply connected polygonal domain, Bε is
a periodic set of holes inside Ω, described below, and Ωε = Ω \ B̄ε. Consider first
the reference cell, the unit square Y = (0, 1)2, a domain B ⊂ Y with sufficiently
smooth boundary (the obstacle domain), and F = Y \B (the fluid domain). Assume
dist(∂B, ∂Y ) > 0 and F connected. Take ε > 0 and define for any i ∈ Z2: Yi =
ε(Y + i), Bi = ε(B + i), Fi = ε(F + i). Finally, set

I = {i ∈ Z2 : Yi ⊂ Ω}, Bε = ∪i∈IBi and Ωε = Ω \ B̄ε.

These definitions are illustrated in Fig. 4. Note that our definition of the perfo-
rated domain is slightly different from that of [31], where Ωε is perforated by all Bi
that are enclosed in Ω. Here, we only leave the holes Bi contained in a cell Yi which
is itself inside Ω.

Yi

Bi

Ω ∪i∈IYi

Figure 4. Domain setup, Ωε is crosshatched and its boundary is
in bold lines

We can now announce our main result, i.e. the error estimate for the CR3

MsFEM method.

Theorem 2.7. Adopt Assumption 2.6 on the perforated domain Ωε and 2.2–2.3
about the mesh and the weighting functions used to set up the MsFEM method.
Assume moreover that the weighting functions are chosen as in (19). Suppose also
that f and the homogenized pressure p∗, cf. Section 3, are sufficiently smooth. The
following error bound holds between the solution to the Stokes equations (1–3) and
its MsFEM approximation (13)–(14)

|u− uH |H1(Ω) + ε‖p− pH‖L2(Ω)

≤ Cε
(
H +

√
ε+

√
ε

H

)
(‖f −∇p∗‖H2(Ω)∩C1(Ω̄) + |p∗|H2(Ω)) , (20)

where the constant C depends only on the mesh regularity and the perforation pattern
B.
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The proof is postponed until Section 5 and will use the results on homogenization
from the next section and some technical lemmas from Section 4. Note that the
norms of both f and p∗ are present in the right-hand side of (20). This is due to
the low regularity assumption on ∂Ω (we only suppose that Ω is polygonal). If the
boundary of Ω were sufficiently smooth, the norms of p∗ could be bounded by the
norm of f by the elliptic regularity estimates for problem (27)–(28).

3. Homogenization for Stokes in two dimensions.

3.1. The formal two-scale asymptotic expansion. We want to derive the as-
ymptotic equation corresponding to (1), in the limit ε → 0 under Assumption 2.6
of periodic obstacles. Let us do it first formally by introducing the two-scale as-
ymptotic expansions in terms of slow variable x and the fast variable y = x/ε. This
procedure is quite well known, see for example [24, 35]. We describe it here for
completeness and to set our notations. Let us expand u and p as

u(x) =
∑
k≥2

εkuk(x, y) , p(x) =
∑
k≥0

εkpk(x, y) , y =
x

ε
,

where all the functions uk, pk are assumed Z2-periodic in y, i.e. 1-periodic with
respect to both y1 and y2. The fact that the expansion for u can be started at the
order ε2 and that of p at the order ε0 can be justified by energy estimates. Without
going into these details, we just observe that this choice allows us to obtain a closed
system of equations for consecutive terms, as shown below.

We substitute these series into the Stokes equations, use the chain rule, and get
in the leading order 1

ε ,

∇yp0 = 0 on F .

This gives p0(x, y) = p∗(x).
At order ε0 we get

−∆yu2 +∇yp1 = f −∇xp∗ on F ,
divy u2 = 0 on F ,

u2 = 0 on ∂B .

Recalling that u2 and p1 are Z2-periodic in y, this gives that u2 and p1 are the linear
combinations of the solutions to the following cell Stokes problems: for i = 1, 2 find
wi : F → R2 and πi : F → R, Z2-periodic and solution of

−∆wi +∇πi = ei on F , (21)

divwi = 0 on F ,
wi = 0 on ∂B ,∫
F
πi = 0 .

We have thus, employing from now on the Einstein convention of summation on
repeating indices,

u2(x, y) = wi(y)(fi(x)− ∂ip∗(x)) , (22)

p1(x, y) = πi(y)(fi(x)− ∂ip∗(x)) .
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The equation for p∗(x) results from the next term in the asymptotic expansion,
at order ε:

−∆yu3 +∇yp2 = 2(∇y · ∇x)u2 −∇xp1 on F ,
divy u3 = − divx u2 on F ,

u3 = 0 on ∂B ,

plus periodicity conditions. The total outward flux of u3 on ∂F is zero in view of
the boundary conditions, so that the system of equations above has a solution if
and only if 〈divx u2〉 = 0 where 〈·〉 stands for the average over F :

〈v〉 =
1

|F|

∫
F
v(y) dy. (23)

This gives Darcy’s equation for p∗:

div(〈wi〉(fi − ∂ip∗)) = 0 on Ω .

We see that u3 and p2 are the linear combinations of the solutions to yet another
cell Stokes problem: for i, j = 1, 2 find γij : F → R2 and ϑij : F → R, Z2-periodic
and solution of

−∆γij +∇ϑij = 2∂jwi − πiej on F ,
div γij = −wi · ej + 〈wi · ej〉 on F , (24)

γij = 0 on ∂B ,∫
F
ϑij = 0 .

We have thus

u3(x, y) = γij(y)∂j(fi(x)− ∂ip∗(x)) , (25)

p2(x, y) = ϑij(y)∂j(fi(x)− ∂ip∗(x)) .

From now on, we will denote by u∗ the homogenized velocity, i.e. the first non-
zero terms in the expansion of u:

u∗ = ε2u2(x, y) = ε2(wi)ε (fi − ∂ip∗) . (26)

Notation. We use a shorthand (·)ε to indicate the rescaling by ε. Thus, (φ)ε(x) =
φ
(
x
ε

)
for any Z2 periodic function φ.

The procedure above does not provide boundary conditions for p∗. The good
choice for these is to ensure that the normal component of the averaged homogenized
velocity vanishes on the boundary, i.e. n · 〈u∗〉 = 0 on ∂Ω.

3.2. A rigorous homogenization estimate. The homogenization of the Stokes
equations was first rigorously studied in [37], where the weak L2 convergence for the
velocity and the strong L2 convergence for the pressure were established. The strong
L2 convergence for the velocity was later proven in [1]. However, for our purposes,
it is desirable to have a convergence result in H1 and, moreover, an estimate of
the homogenization error in this norm. Such an estimate is available in [31] with
a relative error of order 6

√
ε. We shall improve it here to

√
ε and provide another

approach to the proof (as already noted, our definition of the perforated domain
is slightly different from that in [31]). Our homogenization result follows. Very
recently, similar estimates have been also proven in [36] by a different approach:
the proof of [36] goes by constructing the boundary layer correctors, whereas our
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proof relies on a simpler cut-off argument. We also note that, unlike [36] and much
of the preceding literature, we do not introduce a pressure reconstruction inside the
holes Bε; our estimate for the error in pressure is established in the fluid domain
only. There is also some discrepancy in the settings between our results and those
of [36]: the regularity assumption on the data f and on the smoothness of the
boundary ∂Ω are not the same. In particular, we choose not to rely on an elliptic
regularity argument to deduce the reularity of p∗ from that of f since our theorem
should be valid in polygonal domains. That is why p∗ is kept in the right-hand side
of our error estimates.

Theorem 3.1. Recall Assumption 2.6 and let u, p be the solution to the Stokes
equations (1 )–(3), p∗ be the solution to the Darcy equation

div(〈wi〉(fi − ∂ip∗)) = 0 on Ω , (27)

n · 〈wi〉(fi − ∂ip∗) = 0 on ∂Ω , (28)

and u∗ be defined by (26) with wi extended by 0 inside B. Assuming that f and p∗

are sufficiently smooth and
∫

Ωε
p∗ = 0 there holds

‖p− p∗‖L2(Ωε) ≤ Cε
1
2 ‖f −∇p∗‖H2(Ω)∩C1(Ω̄) , (29)

|u− u∗|H1(Ωε) ≤ Cε
3
2 ‖f −∇p∗‖H2(Ω)∩C1(Ω̄) , (30)

‖u− u∗‖L2(Ωε) ≤ Cε
5
2 ‖f −∇p∗‖H2(Ω)∩C1(Ω̄) , (31)

where C is independent of ε.

Remark 5. The estimate for the velocity in the H1 norm essentially says that
the relative error is of order

√
ε. Indeed, the velocity itself is of order ε2, but

its derivatives are of order ε since both the exact solution and its homogenized
approximation oscillate on the length scale ε. Also note that the deterioration
of order

√
ε is due to the boundary layers near ∂Ω. Indeed, u∗ does not satisfy

the boundary condition u = 0 on ∂Ω, which worsens the approximation near the
boundary. Technically, this is taken into account by the introduction of the cut-off
function ηε in the forthcoming proof. If the boundary layers were absent, which
would be the case, for example, under the periodic boundary conditions over a
rectangular box Ω = (0, εn) × (0, εm) with n,m ∈ N, the a priori error estimate
would give the relative error of order ε. Indeed, inspecting the forthcoming proof,
one can see that neither Lemma 3.3 nor the cut-off functions ηε are no longer needed
in this case and the final result becomes

1

ε2
‖u− u∗‖L2(Ωε) +

1

ε
|u− u∗|H1(Ω) + ‖p− p∗‖L2(Ωε) ≤ Cε‖f −∇p∗‖H2(Ωε) .

First, let us establish two technical lemmas of the inf-sup type related to the
divergence free constraint (Lemma 3.2) and to the boundary conditions for the
velocity (Lemma 3.3). All these results are proved under Assumption 2.6.

Lemma 3.2. For any q ∈ L2
0(Ωε) there exists v ∈ H1

0 (Ωε)2 such that

div v = q on Ωε and |v|H1(Ωε) ≤
C

ε
‖q‖L2(Ωε) , (32)

where C > 0 is a constant independent of ε.

Proof. Let us take any q ∈ L2
0(Ω) such that q = 0 on Bε. Using [20, Corollary 2.4,

p.24], we can pick some w ∈ H1
0 (Ω)2 such that

divw = q on Ω and |w|H1(Ω) ≤ C‖q‖L2(Ω). (33)
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This gives us a velocity field w on Ω that does not satisfy the boundary conditions
on Ωε, i.e. w 6= 0 on ∂Bε. Using it as a starting point, we can construct an admissible
velocity field on each cell Fi, proceeding cell by cell, as follows.

Let us pick any i ∈ I, denote by wYi , qYi the restrictions of w, q to the cell Yi
and map them to the reference cell Y :

ŵY (x) = wYi(ε(x+ i)), q̂Y (x) = εqYi(ε(x+ i)).

The scalings are chosen so that

div ŵY = q̂Y on Y.

A standard trace theorem assures that there exists r ∈ H1(F)2 such that

r = ŵY on ∂Y, r = 0 on ∂B and ‖r‖H1(F) ≤ C‖ŵY ‖H 1
2 (∂Y )

≤ C‖ŵY ‖H1(Y ).

Using again the corollary from [20] mentioned above and noting that∫
F

(q̂Y − div r) =

∫
F
q̂Y −

∫
∂F

r · n =

∫
Y

q̂Y −
∫
∂Y

ŵY · n =

∫
Y

(q̂Y − div ŵY ) = 0 ,

we can construct z ∈ H1
0 (F)2 with

div z = q̂Y − div r and ‖z‖H1(F) ≤ C‖q̂Y − div r‖L2(F) ≤ C‖ŵY ‖H1(Y ).

Setting now v̂Y ∈ H1(F)2 as v̂Y = r + z we observe

v̂Y = ŵY on ∂Y, v̂Y = 0 on ∂B, div v̂Y = q̂Y and ‖v̂Y ‖H1(F) ≤ C‖ŵY ‖H1(Y ).

Note that the constants C in the above bounds depend only on the geometry of F .
In particular, they are obviously ε-independent. We now rescale the cell Y back to
the cell Yi of size ε and define vYi ∈ H1(Fi)

2 by v̂Y (x) = vYi(ε(x + i)). Recalling
the scalings of the functions and of their norms
v̂Y (x) = vYi(ε(x+ i))

ŵY (x) = wYi(ε(x+ i))

q̂Y (x) = εqYi(ε(x+ i))

⇒


|v̂Y |H1 = |vYi |H1

‖ŵY ‖H1 =

(
|wYi |2H1 +

1

ε2
‖wYi‖L2

) 1
2

≤ 1

ε
‖wYi‖H1 ,

‖q̂Y ‖L2 = ‖qYi‖L2

we conclude

div vYi = qYi on Fi, vYi = wYi on ∂Yi, vYi = 0 on ∂Bi , (34)

and

|vYi |H1(Fi) ≤
C

ε
‖wYi‖H1(Yi) .

We now collect all the pieces vYi into v ∈ H1
0 (Ωε)2 such that v|Yi = vYi for any

cell Yi, i ∈ I and let v = w on Ωb := Ω \ ∪i∈IYi. Such a function v meets all the
requirements of the lemma. Indeed, div v = q on Ωε and

|v|2H1(Ωε)2 = |w|2H1(Ωb)
+
∑
i∈I
|vYi |2H1(Fi)

≤ |w|2H1(Ωb)
+
∑
i∈I

C

ε2
‖w‖2H1(Yi)

≤ C

ε2
‖w‖2H1(Ω) ≤

C

ε2
‖q‖2L2(Ωε) .

Lemma 3.2 is very close to the results on the restriction operator in [37, 26].
Our next result is essentially taken from [31] but we provide here a slightly simpler
construction that suits well to polygonal domains.
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Lemma 3.3. For any g ∈ C1(Ω̄)2 with div g = 0 on Ω, g ·n = 0 on ∂Ω, δ > 0 small
enough, there exists v ∈ H1(Ω)2 such that supp v ⊂ Oδ := {x ∈ Ω : dist(x, ∂Ω) < δ}
and

v = g on ∂Ω, div v = 0 on Ω, and |v|H1(Ω) ≤
C√
δ
‖g‖C1(Ω̄) ,

where C > 0 is a constant independent of δ.

Proof. According to [20, Theorem 3.1], we can write g = ∇⊥Ψ for some Ψ ∈ H1(Ω),
with ∇⊥ = (−∂2, ∂1)T . In fact, Ψ ∈ C2(Ω̄) as seen from the explicit construction

Ψ(x) = −
∫ x

a

g⊥ · d~R ,

where x is any point in Ω, a is a fixed point in Ω, g⊥ = (−g2, g1)T and the integral

is taken over any curve connecting a and x (parameterized by a vector function ~R).
Note that g · n = ∇Ψ · τ = 0 on ∂Ω, where n (resp. τ) is the unit vector normal
(resp. tangent) to ∂Ω, so we can choose Ψ such that Ψ(x) = 0 on ∂Ω. We can now
pick a cut-off function η ∈ C∞(Ω) such that η(x) = 1 on Oδ/2, η(x) = 0 on Ω \Oδ,
and ‖∇η‖L∞ ≤ C

δ , ‖∇2η‖L∞ ≤ C
δ2 . Here and below, C stands for positive constants

independent of δ. Now, setting v = ∇⊥(ηΨ), we have div v = 0, supp v ⊂ Oδ, v = g
on ∂Ω, and

|v|H1(Ω) = ‖∇∇⊥(ηΨ)‖L2(Oδ)

≤‖η∇∇⊥Ψ‖L2(Oδ) + 2‖(∇η)(∇⊥Ψ)‖L2(Oδ) + ‖Ψ∇∇⊥η‖L2(Oδ)

≤C‖∇g‖L2(Oδ) +
C

δ
‖g‖L2(Oδ) +

C

δ2
‖Ψ‖L2(Oδ)

≤C
√
δ‖∇g‖L∞(Ω) +

C√
δ
‖g‖L∞(Ω) +

C

δ3/2
‖Ψ‖L∞(Oδ)

since meas(Oδ) ≤ Cδ. We observe now that any point x ∈ Oδ can be connected
to a point y ∈ ∂Ω by a segment of length no greater than δ lying in Oδ. Recalling
that Ψ(y) = 0 and using the Taylor expansion of order 0 gives |Ψ(x)| ≤ δ|∇Ψ(z)|
for some point z lying on this segment. Thus,

‖Ψ‖L∞(Oδ) ≤ δ‖∇Ψ‖L∞(Oδ) = δ‖g‖L∞(Ω) ,

which yields the result.

We remind also a Poincaré inequality on the perforated domain.

Lemma 3.4. Under Assumption 2.6, for any φ ∈ H1
0 (Ωε)

‖φ‖L2(Ωε) ≤ Cε|φ|H1(Ωε) , (35)

with a constant C > 0 independent of ε.

Proof. This is a corollary of Lemma 4.6 proven below. The present lemma can be
also proven directly, cf. for example [24] or [30, Appendix A.1]. The definition
of the perforated domain in these references is slightly different from the present
article (the perforations are maintained near the boundary) but this does not change
essentially the proof, since the band where the perforations are eliminated is of width
∼ ε.

Proof of Theorem 3.1. Consider

w′i = wi − |F| 〈wi〉 = wi −
∫
Y

wi ,
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with wi extended by 0 inside B and observe that divw′i = 0 on Y (in the sense of
distributions), w′i is Z2-periodic and of zero mean over Y . Thus (cf. [27, p. 6]) there
exists a Z2-periodic function ψi such that

wi − |F|〈wi〉 = ∇⊥ψi on Y .

In fact, ψi can be assumed as smooth on F as we want, as seen from its explicit
construction

ψi(x) =

∫ 1

0

(x2[w′i]1(tx)− x1[w′i]2(tx)) dt ,

and the fact that wi is smooth thanks to our assumptions on perforation B.
Assumptions 2.6 also implies that there exists a constant c > 0 such that Oδ

with δ = cε does not intersect the holes ∪i∈IBi (here, Oδ stands for the band of
width δ near ∂Ω as in Lemma 3.3). Let us choose a cut-off function ηε ∈ C∞(Ω̄)

with ηε = ∂ηε

∂n = 0 on ∂Ω, ηε(x) = 1 on Ω \Oδ and

‖ηε‖L∞(Ω) = 1, ‖1− ηε‖L2(Ω) ≤ C
√
ε, |ηε|H1(Ω) ≤

C√
ε
, |ηε|H2(Ω) ≤

C

ε3/2
. (36)

We now consider the expansion of the velocity of order 3 in ε and correct it using
the cut-off ηε to take into account the boundary layer:

uε,3 = ε2|F|〈wi〉(fi − ∂ip∗) + ε3∇⊥((ψi)εη
ε)(fi − ∂ip∗)

+ ε3(γij)εη
ε∂j(fi − ∂ip∗) .

(37)

The lower index (·)ε is used here and below according to Notation on page 13. We
also assume that γij are extended by 0 inside B so that uε,3 is well defined on the
whole of Ω. Remind that ηε = 1 on Ω \Oδ so that the expression for uε,3 simplifies
on this portion of Ω to

uε,3 = u∗ + ε3u3 = ε2(wi)ε(fi − ∂ip∗) + ε3(γij)ε∂j(fi − ∂ip∗) . (38)

It means in particular that uε,3 vanishes on the holes Bi, i ∈ I which are all inside
Ω \ Oδ. Let us compute div uε,3 knowing that the divergence of the first term in
(37) vanishes by (27):

div uε,3 = ε2(∇⊥ψi)εηε · ∇(fi − ∂ip∗) + ε3(ψi)ε∇⊥ηε · ∇(fi − ∂ip∗)
+ ε2(div γij)εη

ε∂j(fi − ∂ip∗)
+ ε3(γij)ε · (∇ηε)∂j(fi − ∂ip∗) + ε3(γij)εη

ε · ∇∂j(fi − ∂ip∗) .

Grouping together the terms of order ε2, using equation (24) for div γij , and denot-
ing by Gε all the terms of order ε3, namely

Gε := ε3(ψi)ε∇⊥ηε · ∇(fi − ∂ip∗)
+ ε3(γij)ε · (∇ηε)∂j(fi − ∂ip∗) + ε3(γij)εη

ε · ∇∂j(fi − ∂ip∗) ,

we proceed with the calculation as

div uε,3 = ε2ηε(wi − |F|〈wi〉 − (wi − 〈wi〉))ε · ∇(fi − ∂ip∗) +Gε

= ε2ηε|B|div(〈wi〉(fi − ∂ip∗)) +Gε = Gε .

Note that this equality also holds trivially inside any hole Bk, k ∈ Z2 since both
sides vanish there. Thanks to the bounds (36), we conclude

‖Gε‖L2(Ωε) ≤ Cε
5
2 ‖f −∇p∗‖H2(Ω)∩C1(Ω̄) ,
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with C > 0 independent of ε. We also note for future use

u− uε,3 = g := −ε2|F|〈wi〉(fi − ∂ip∗) on ∂Ω . (39)

We now turn to estimates for the residual in (1) caused by the homogenization.
One of the technical difficulties consists in the presence of “virtual” holes Bi near ∂Ω
that are in fact in the fluid domain Ωε according to our conventions, cf. Assumption
2.6 and Fig. 4 (the gray hole contours in the periodic cells cut by the boundary
∂Ω). One should thus define properly the cell velocities wi inside Bk. The usual
extension by 0, which worked fine in all the previous calculations, does not suffice
here because it does not give a twice differentiable function. We thus introduce an
extension w̃i of wi from F to Y such that w̃i = wi on F and w̃i is of class C2 on
Y . Now, consider

ũ∗ = ε2(w̃i)ε (fi − ∂ip∗) .
Similarly, let π̃i be an extension of πi from F to Y such that π̃i = πi on F and π̃i
is of class C1 on Y . Introduce the expansion of first order in ε for the pressure

p̃ε,1 = p∗ + ε(π̃i)ε(fi − ∂ip∗) . (40)

Thus, the residual due to the homogenization in eq. (1) is given everywhere on Ωε

by

Fε := −∆(u− ũ∗) +∇(p− p̃ε,1)

= f + (∆w̃i −∇π̃i)ε(fi − ∂ip∗)
+ 2ε(∇w̃i)ε∇(fi − ∂ip∗) + ε2(w̃i)ε∆(fi − ∂ip∗)
−∇p∗ − ε(π̃i)ε∇(fi − ∂ip∗) .

(41)

Rearranging the terms yields

Fε = 2ε(∇w̃i)ε∇(fi − ∂ip∗) + ε2(w̃i)ε∆(fi − ∂ip∗)− ε(π̃i)ε∇(fi − ∂ip∗)
+ (∆w̃i −∇π̃i + ei)ε(fi − ∂ip∗) .

The terms in the first line above are of order ε or higher. The terms in the second
line are of order 1, but they vanish in fact at all the fluid cells Fi, i ∈ I. Since the
measure of the remaining part Ωε \ ∪i∈IFi is of order ε, we get

‖Fε‖L2(Ωε) ≤ C
√
ε‖f −∇p∗‖H2(Ω)∩C1(Ω̄) . (42)

We summarize all the derived bounds as follows: the functions u− ũ∗, u−uε,3 ∈
H1(Ωε)2 and p− p̃ε,1 ∈ L2(Ωε) satisfy

−∆(u− ũ∗) +∇(p− p̃ε,1) = Fε on Ωε , (43)

div(u− uε,3) = Gε on Ωε ,

u− uε,3 = 0 on ∂Bε ,

u− uε,3 = g on ∂Ω .

Apart from the difference between ũ∗ and uε,3, this is a Stokes system and we
proceed with bounding the norms of its solution in the standard manner, cf. [20],
using the inf-sup Lemmas 3.2 and 3.3. Indeed, Lemma 3.2 assures that there exists
vp ∈ H1

0 (Ωε)2 such that

div vp = Gε and |vp|H1(Ωε) ≤
C

ε
‖Gε‖L2(Ωε) ≤ Cε

3
2 ‖f −∇p∗‖H2(Ω)∩C1(Ω̄) .



MSFEM FOR STOKES FLOWS: ERROR ESTIMATES 19

Recall that Oδ with δ = cε as introduced above, does not intersect Bε. Then, in
view of the definition of g (39) and equations (27)–(28), Lemma 3.3 assures that
there exists vb ∈ H1(Ωε)2 supported in Oδ and thus vanishing on Bε such that
div vb = 0 on Ωε,

vb = g on ∂Ω and |vb|H1(Ωε) ≤
C√
ε
‖g‖C1(Ω̄) ≤ Cε

3
2 ‖f −∇p∗‖C1(Ω̄) .

Set v = u − uε,3 − vp − vb and observe that v ∈ H1
0 (Ωε)

2 and div v = 0 on Ωε.
Multiplying (43) by v and integrating over Ωε by parts yields∫

Ωε
∇(u− ũ∗) : ∇v =

∫
Ωε
Fε · v ≤ ‖Fε‖L2(Ωε)‖v‖L2(Ωε) ≤ Cε‖Fε‖L2(Ωε)|v|H1(Ωε) .

We have used here Poincaré inequality (35) with φ = v. Thus,

|v|2H1(Ωε) ≤ Cε‖Fε‖L2(Ωε)|v|H1(Ωε) −
∫

Ωε

∇(uε,3 + vp + vb − ũ∗) : ∇v

≤
(
Cε‖Fε‖L2(Ωε) + |ũ∗ − uε,3|H1(Ωε) + |vp|H1(Ωε) + |vb|H1(Ωε)

)
|v|H1(Ωε) .

We observe

ũ∗ − u∗ = ε2(w̃i − wi)ε (fi − ∂ip∗)

and

u∗ − uε,3 = −ε3(ψi)ε(∇⊥ηε)(fi − ∂ip∗)− ε3(γij)εη
ε∂j(fi − ∂ip∗) ,

which entails |ũ∗ − u∗|H1(Ωε) ≤ Cε
3
2 ‖f − ∇p∗‖C1(Ω̄) since w̃i − wi vanishes in Ωε

outside of a band near ∂Ω of width of order ε, and finally |ũ∗ − uε,3|H1(Ωε) ≤
Cε

3
2 ‖f − ∇p∗‖H2(Ω)∩C1(Ω̄) thanks to the bounds (36). Combining this with (42)

and the above estimates on vp and vb proves

|v|H1(Ωε) ≤ Cε
3
2 ‖f −∇p∗‖H2(Ω)∩C1(Ω̄) ,

and consequently (30) by the triangle inequality. The L2 estimate (31) follows
thanks to (35).

To prove the remaining estimate for pressure (29), we take v ∈ H1
0 (Ωε) such that

div v = p − p̃ε,1 as constructed in Lemma 3.2, multiply (43) by v and integrate by
parts∫

Ωε
(p− p̃ε,1)2 =

∫
Ωε

(p− p̃ε,1) div v =

∫
Ωε
Fε · v −

∫
Ωε
∇(u− ũ∗) : ∇v

≤ Cε 3
2 ‖f−∇p∗‖H2(Ω)∩C1(Ω̄)|v|H1(Ωε) ≤ Cε

1
2 ‖f−∇p∗‖H2(Ω)∩C1(Ω̄)‖p−p̃ε,1‖L2(Ωε) .

using the estimate in Lemma 3.2. Thus, by the triangle inequality,

‖p− p∗‖L2(Ωε) ≤ ‖p− p̃ε,1‖L2(Ωε) + ‖p̃ε,1 − p∗‖L2(Ωε) ≤ Cε
1
2 ‖f −∇p∗‖H2(Ω)∩C1(Ω̄) ,

since (p̃ε,1 − p∗) term is of order ε as seen from (40).

4. Technical lemmas. We assume implicitly in this section that mesh TH is quasi-
uniform, as described in the beginning of Section 2 and that Assumptions 2.2-2.3
and 2.6 are valid. The weights wi are assumed to be chosen as in (19), i.e. we only
study the CR3 variant of the method.
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4.1. Some lemmas borrowed from the usual finite element theory. The
results collected in this section are well known. We emphasize however that they
are valid on general polygonal meshes, which is a setting different form that of the
standard textbooks, like [6, 17].

Lemma 4.1. For all T ∈ TH , all the edges E ⊂ ∂T and all v ∈ H1(T )

‖v‖2L2(E) ≤ C
(
H−1‖v‖2L2(T ) +H‖∇v‖2L2(T )

)
. (44)

Proof. This is the standard trace inequality properly scaled to a domain of diameter
∼ H.The exact value of the constant C is given in Theorem 1.5.1.10 of [21].

Lemma 4.2. Let ΠH be the L2(Ω)-orthogonal projection on the space of piecewise
constant functions on TH . For any f ∈ H1(Ω),

‖f −ΠHf‖L2(Ω) ≤ CH|f |H1(Ω) (45)

holds with a constant C > 0 depending only on the regularity of TH .

Proof. This is a standard finite element interpolation result. It is proven by a
Poincaré inequality on the reference element and scaling. If all the mesh cells are
convex, one can take C = 1/π, cf. [3].

Lemma 4.3. There exists a bounded linear operator IH : H1(Ω) → H1(Ω) such
that IHv is a polynomial of degree ≤ 1 on any edge E ∈ EH for any v ∈ H1(Ω) and
it holds

‖IHv − v‖L2(Ω) ≤ CH|v|H1(Ω) .

Moreover, if v ∈ H2(Ω),

|IHv − v|H1(Ω) ≤ CH|v|H2(Ω)

holds with a constant C > 0 depending only on the regularity of TH .

Proof. One can simply take IH as the usual Clément interpolation operator on P1

finite elements if TH is a triangular mesh. Otherwise, we consider T̂H a submesh

of TH which consists of triangles only. To construct T̂H , one only needs to remesh
the reference element T in triangles, without adding nodes on ∂T . Applying the

mapping K on each element of TH one obtains then T̂H . We can now define IH as

the Clément interpolation operator on P1 finite elements on T̂H .

4.2. Lemmas related to perforated domains and oscillating functions.

Lemma 4.4. Suppose H ≥ γε with some big enough γ. Let T ⊂ TH and take any
v ∈ H1(T )2 vanishing on Bε ∩ T . Then,

‖v‖L2(∂T ) ≤ C
√
ε|v|H1(T ) . (46)

holds. The constants γ > 0 and C > 0 here depend only on the regularity of mesh
TH and on the perforation pattern B.

Proof. We can safely suppose that the perforation pattern B contains a disc of
radius c1 > 0. It means that each perforation εBk, k ∈ Z2 contains a disc of
radius r0 = c1ε. As shown in Fig. 5, the boundary ∂T can be decomposed into non
overlapping segments S0, S1, S2 . . . such that each segment S lies at a distance no
greater than c2ε from the center of a disc of radius r0 which lies completely inside
Bε ∩ T . In order to do this, we should suppose that the mesh cell is big enough,
hence the restriction H ≥ γε. Thus, to each segment S we associate a disc of radius
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Ωε

S0
S1

S2
S3

S4
S5

S6

S7

. . .

...

Sn

T

Figure 5. Partition of the boundary of T (bottom edge only, for clarity)

O
r0

θ = α θ = 0

θ = β

•(
r = h

cos θ , θ
)

Sk

h

D

Figure 6. Local coordinates system associated to some Sk

r0 centered at a point O and a “sector” D (see Fig. 6) which is bounded by two
lines intersecting at O, by S itself and by a portion of the circle centered at O.

Let us fix a segment S as above and introduce properly shifted and rotated
polar coordinates (r, θ) such that r = 0 corresponds to the disc center O and θ = 0
corresponds to the direction normal to S, cf. Fig. 6. The segment S is parameterized
in these coordinates as

θ ∈ [α, β] 7→ Xθ :=

(
rθ
θ

)
with rθ =

h

cos θ
,
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where h is the minimal distance from pointO to the line containing S and α < 0 < β.
A simple geometrical calculation yields

|dXθ| =
h

cos2 θ
dθ ,

so that ∫
S

v2 =

∫ β

α

v2(rθ, θ)
h

cos2 θ
dθ ,

where we write v as a function of polar coordinates (r, θ). Since v vanishes in the
holes, we have v(r0, θ) = 0 and∫

S

v2 =

∫ β

α

(∫ rθ

r0

∂v

∂r
(r, θ)dr

)2
h

cos2 θ
dθ

≤
∫ β

α

(∫ rθ

r0

|∇v|2(r, θ)dr

)
(rθ − r0)

r2
θ

h
dθ

≤
(

max
θ∈[α,β]

(rθ − r0)r2
θ

hr0

)∫ β

α

∫ rθ

r0

|∇v|2(r, θ)r dr dθ ≤ Cε
∫
D

|∇v|2 ,

with some constant C > 0. Indeed, under our geometrical assumptions we have

h ≥ r0 ≥ c1ε, rθ ≤ c2ε so that
(rθ−r0)r2θ

hr0
≤ c32

c21
ε. Now, summing up over all

the segments composing ∂T and noting that the sector D corresponding to such
a segment S is inside the cell T and, moreover, for any two segments S, S′ the
corresponding sectors D,D′ do not intersect, yields (46).

Lemma 4.5 (Poincaré inequality on a perforated mesh cell). Suppose H ≥ γε with
γ from Lemma 4.4. Then, for any T ∈ TH and any v ∈ H1(T )2 vanishing on Bε∩T

‖v‖L2(T ) ≤ εC |v|H1(T ) (47)

holds with some positive constant C independent of ε and H.

Proof. Applying a Poincaré inequality on the reference cell Y with the hole B and
then rescaling to the cells of size ε gives

‖v‖L2(Yk) ≤ εC |v|H1(Yk)

for any perforated cell Yk, k ∈ Z2 and any v ∈ H1(Yk)2 vanishing on Bk. Let
I(T ) ⊂ Z2 be the set of indexes corresponding to the cells inside T and assume that
the boundary of T is composed of m edges E1, . . . , Em. One can then introduce
m rectangles Π1, . . . ,Πm, each Πi with base Ei and of width (in the direction
perpendicular to Ei) ≤ cε with some H-independent constant c, so that

T ⊂ ∪k∈I(T )Yk ∪Π1 ∪ · · · ∪Πm , .

We can also safely assume that every point in T is covered by at most 3 subsets
on the right-hand side of the inclusion above, i.e. at most by a cell Yk and by two
rectangles Πi.

Let us introduce the Cartesian coordinates (ξ, η) on rectangle Πi so that η = 0,
ξ ∈ [0, |Ei|] corresponds to Ei and the coordinate η varies from 0 to some hi ≤ cε
on Πi. Assuming that v is extended from Πi ∩ T to the whole of Πi so that the H1

norm of v over Πi remains bounded via that over Πi ∩ T , we calculate

‖v‖2L2(Πi)
=

∫ |Ei|
0

∫ hi

0

v2(ξ, η)dηdξ
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= hi

∫ |Ei|
0

v2(ξ, 0)dξ +

∫ |Ei|
0

∫ hi

0

∫ η

0

2v(ξ, s)∂ηv(ξ, s)dsdηdξ

≤ cε‖v‖2L2(Ei)
+

1

2
‖v‖2L2(Πi)

+ Cε2|v|2H1(Πi)
.

Thus,

‖v‖2L2(Πi∩T ) ≤ C(ε‖v‖2L2(Ei)
+ ε2|v|H1(Πi∩T )) .

Summing over all the cells Yk, k ∈ I(T ) and all the rectangles Πi and reminding
that each point of T is covered by at most 3 such sets, gives

‖v‖2L2(T ) ≤ C(ε‖v‖2L2(∂T ) + ε2|v|H1(T )) ,

which entails (47) thanks to Lemma 4.4.

Lemma 4.6 (Poincaré inequality in H1 - broken spaces). For any v ∈ V extH

‖v‖L2(Ωε) ≤ εC|v|H1(Ωε) (48)

holds with some positive constant C indepdendent of ε.

Proof. We distinguish two cases: H ≥ γε with γ from Lemma 4.4 and H < γε. In
the first case, the current lemma is a simple corollary of the previous one obtained
by summing (47) over all the mesh cells. We thus assume from now on H < γε.
Borrowing from [5] the idea of using an embedding theorem for BV spaces (the
functions of bounded variation), we can write on each cell Yk, k ∈ Z2 (of size ε,
with the perforation Bk inside) and any v ∈ V extH extended by 0 outside Ω

‖v‖L2(Yk) ≤ C TVYk(v) := C sup
ϕ∈C1

C(Yk),|ϕ|≤1 on Yk

∫
Yk

v divϕ . (49)

We have applied here Theorem 2 from [5], the proof of which can be found in [2,
Chapter 3].1 Note that we can use the semi-norm TVYk of the BV space since v
vanishes on the perforation Bk. The constant C is in principle domain dependent
but it can be considered ε-independent in our case. Indeed, the inequality above is
invariant under scaling x 7→ (x− xk)/ε so that the value of C can be taken as that
on the reference cell Y with its reference perforation B.

Integration by parts and the Cauchy-Schwarz inequality give for any ϕ ∈ C1
C(Yk)

such that |ϕ| ≤ 1 on Yk∣∣∣∣∫
Yk

v divϕ

∣∣∣∣ =

∣∣∣∣∣−
∫
Yk\EH

∇v · ϕ+
∑
E∈EH

∫
Yk∩E

[[v]]n · ϕ

∣∣∣∣∣
≤ ε|v|H1(Yk) +

( ∑
E∈EH

‖[[v]]‖2L2(Yk∩E)

) 1
2
( ∑
E∈EH

|Yk ∩ E|

) 1
2

≤ ε|v|H1(Yk) + C
ε√
H

( ∑
E∈EH

‖[[v]]‖2L2(Yk∩E)

) 1
2

.

1We recall that the ambient dimension is assumed equal to 2 in this paper. Were we interested
in the case of a perforated domain in Rd with d > 2, we would have the norm of Ld/(d−1) rather

than L2 in the left-hand side of (49). A proof of (48) could be then performed by first applying

(49) to |v|α with α = 2 d−1
d

rather than to v.
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Indeed, the number of mesh edges intersecting Yk is of the order of ε2

H2 and the

length of each edge is smaller than H so that
∑
E∈EH |Yk ∩ E| ≤ C ε2

H . Taking the
supremum over ϕ gives

‖v‖2L2(Yk) ≤ C

(
ε2|v|2H1(Yk) +

ε2

H

∑
E∈EH

‖[[v]]‖2L2(Yk∩E)

)
.

Summing this over all the cells Yk gives

‖v‖2L2(Ω) ≤ C

(
ε2|v|2H1(Ω) +

ε2

H

∑
E∈EH

‖[[v]]‖2L2(Yk)

)
.

By the trace inequality ‖[[v]]‖2L2(Yk) ≤ CH|v|
2
H1(ωE), this entails the desired result

‖v‖2L2(Ω) ≤ Cε
2

(
|v|2H1(Ω) +

∑
E∈EH

|v|2H1(ωE)

)
≤ Cε2|v|2H1(Ω) .

The three preceding lemmas could be established under more general geometrical
assumptions than the periodic placement of the perforations. For example, a bound
similar to that of Lemma 4.5 can be found in [34, Lemma A.1] in the case of
randomly distributed perforations that are at a distance of order ε from one another.
On the other hand, the proof of the following lemma uses extensively the results and
notations on homogenization from Section 3, so that the periodicity assumption is
essential there. This lemma will be the principal ingredient of the proof of Theorem
2.7.

Lemma 4.7. Let u, p be the solution to the Stokes system (1)–(3) and set p =
p∗ + p′ where p∗ is the solution to the Darcy problem (27)–(28). Under the same
assumptions as those of Theorem 2.7 with γ from Lemma 4.4, we have, for any
v ∈ ZextH := {v ∈ V extH : div v|T = 0 ∀T ∈ TH}∣∣∣∣∣ ∑

T∈TH

∫
∂T∩Ωε

((∇u)n− p′n) · v

∣∣∣∣∣
≤ Cε

(√
ε+

√
ε

H

)
|v|H1(Ωε) ‖f −∇p

∗‖H2(Ω)∩C1(Ω̄), (50)

where the constant C is independent of H, ε, f and v.

Proof. Using the divergence theorem on any T ∈ TH and reminding (40) and div v =
0 on T , we observe that∑

T∈TH

∫
∂T∩Ωε

((∇u)n− p′n) · v

=
∑
T∈TH

∫
Ωε∩T

∇u : ∇v −
∫

Ωε∩T
(f −∇p∗) · v

=
∑
T∈TH

[∫
Ωε∩T

(∇u−∇ũ∗) : ∇v +

∫
Ωε∩T

(∇ũ∗ −
(
p̃ε,1 − p∗

)
I) : ∇v

−
∫

Ωε∩T
(f −∇p∗) · v

]
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=
∑
T∈TH

∫
Ωε∩T

(∇u−∇ũ∗) : ∇v +
∑
T∈TH

∫
Ωε∩∂T

(
(∇ũ∗)n−

(
p̃ε,1 − p∗

)
n
)
· v

−
∑
T∈TH

∫
Ωε∩T

(f + ∆ũ∗ −∇p̃ε,1) · v . (51)

The first term in the sum above can be bounded by

Cε
√
ε‖f −∇p∗‖H2(Ω)∩C1(Ω̄)|v|H1(Ωε) ,

using the homogenization estimate (31). We turn now to the second term in (51).
Using Lemmas 4.1 and 4.4 and the fact that w̃i, π̃i and ∇w̃i are uniformly

bounded, we have for any T ∈ TH∣∣∣∣∫
Ωε∩∂T

((∇ũ∗)n− (p̃ε,1 − p∗)n) · v
∣∣∣∣

=

∣∣∣∣∫
∂T∩Ωε

[
ε(∇w̃i)εn(fi − ∂ip∗) + ε2(w̃i)ε · ∇(fi − ∂ip∗)n− ε(π̃i)ε(fi − ∂ip∗)

]
· v
∣∣∣∣

≤ C‖v‖L2(∂T )[ε‖f −∇p∗‖L2(∂T ) + ε2‖∇(f −∇p∗)‖L2(∂T )]

≤ Cε
√

ε

H
|v|H1(T ) ‖f −∇p∗‖H2(T ) .

Now, summing up over all the cells and using the discrete Cauchy-Schwarz inequality
yields∣∣∣∣∣ ∑

T∈TH

∫
Ωε∩∂T

((∇u∗)n− (p̃ε,1 − p∗)n) · v

∣∣∣∣∣ ≤ Cε
√

ε

H
|v|H1(Ωε) ‖f −∇p

∗‖H2(Ω).

To bound the third term in (51), we recall the definition of Fε (41) and observe that

f + ∆ũ∗ −∇p̃ε,1 = Fε .

Thus, using the estimate of Fε and the Poincaré inequality from Lemma 4.6,∣∣∣∣∣ ∑
T∈TH

∫
Ωε∩T

(f + ∆ũ∗ −∇p̃ε,1) : v

∣∣∣∣∣ ≤ Cε√ε‖f −∇p∗‖H2(Ω)∩C1(Ω̄) |v|H1(Ωε) .

Summing up the bounds for all the three terms in (51) yields (50).

5. Proof of Theorem 2.7. We note first of all that error estimate (20) is trivial
if H is of order ε or smaller. Indeed, if H ≤ γε, then (20) is reduced to

|u− uH |H1(Ω) + ε‖p− pH‖L2(Ω) ≤ Cε(‖f −∇p∗‖H2(Ω)∩C1(Ω̄) + |p∗|H2(Ω)) , (52)

with a constant C depending on γ. But we have, in fact for any ε and H,

|u|H1(Ω) + ε‖p‖L2(Ω) ≤ Cε‖f‖L2(Ω) ,

|uH |H1(Ω) + ε‖pH‖L2(Ω) ≤ Cε‖f‖L2(Ω) .

These estimates for the velocity are easily obtained from the Poincaré inequality on
the perforated domain Ωε which is valid even for the broken H1 Sobolev space, as
proven in Lemma 4.6. As for the pressure, these are the standard bounds for the
solutions of saddle-point problems since the inf-sup property holds with a constant
of order ε both on continuous and discrete levels, cf. Lemmas 3.2 and 2.5. This
clearly entails (52) and consequently (20) if H < γε.
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We thus assume from now on H ≥ γε with γ from Lemma 4.4 and use without
further notice Lemmas 4.4, 4.5, 4.7 from the previous section. Our error estimate
is essentially based on a Strang lemma (e.g. [6, Lemma 10.1.7])

|u− uH |H1 ≤ inf
v∈ZH

|u− v|H1 + sup
v∈ZH\{0}

|a(u− uH , v)|
|v|H1

, (53)

where u is the solution to (1)–(3) and uH is the solution to (15).
To bound the first term in (53), we recall that u is the solution to problem (1)–(3)

and introduce

vH(x) =
∑
E∈EH

3∑
i=1

(∫
E

u · ψE,i
)

ΦE,i(x),

qH(x) =
∑
E∈EH

3∑
i=1

(∫
E

u · ψE,i
)
πE,i(x) ,

with ΦE,i and πE,i defined in Lemma 2.4 with the weights ωEi chosen as in (19).
Observe, for all edges E ∈ EH and all cells T ∈ TH , that∫

E

vH =

∫
E

u ,∫
E

ψEvH · nE =

∫
E

ψEu · nE ,

(∇vH)n− qHn = a+ b nEψE on (each side of) E (54)

with a ∈ R2, b ∈ R,

−∆vH +∇qH = 0 on T ∩ Ωε .

By construction, vH ∈ VH . Moreover, it is easy to see that vH ∈ ZH . Indeed, for
any T ∈ TH we have div vH = cT on T \Bε with some constant cT and

cT |T \Bε| =
∫
T

div vH =

∫
∂T

n · vH =

∫
∂T

n · u = 0 ,

so that cT = 0.
We also have, setting p = p∗ + p′, as in Lemma 4.7

|u− vH |2H1(Ωε) =
∑
T∈TH

∫
Ωε∩T

∇(u− vH) : ∇(u− vH)

−
∑
T∈TH

∫
Ωε∩T

(p′ − qH) div(u− vH)

=
∑
T∈TH

∫
Ωε∩T

(−∆(u− vH) +∇(p′ − qH)) · (u− vH)

+
∑
T∈TH

∫
∂T∩Ωε

(u− vH) · ((∇u)n− p′n)

−
∑
T∈TH

∫
∂T∩Ωε

(u− vH) · ((∇vH)n− qHn) .

(55)

We now successively bound the three terms of the right-hand side of (55).
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• For the first term, we observe that
∫
E
s (u− vH) · nE = 0 for any E ∈ EH

and for any polynomial s ∈ P1(E). It means that ∀T ∈ TH and ∀a ∈ R2∫
T

a · (u− vH) =

∫
T

∇(a · x) · (u− vH) =

∫
∂T

(a · x)n · (u− vH) = 0 ,

since div(u− vH) = 0. In particular,∑
T∈TH

∫
Ωε∩T

ΠH(f −∇p∗) · (u− vH) = 0 ,

where ΠH is the projection on piecewise constant functions, as in Lemma 4.2.
Recalling the last line in (54) and using (45) and (48), we get∑

T∈TH

∫
Ωε∩T

(−∆(u− vH) +∇(p′ − qH)) · (u− vH)

=
∑
T∈TH

∫
Ωε∩T

(f −∇p∗ −ΠH(f −∇p∗)) · (u− vH)

≤ ‖(f −∇p∗)−ΠH(f −∇p∗)‖L2(Ω) ‖u− vH‖L2(Ωε)

≤ CεH|(f −∇p∗)|H1(Ω)|u− vH |H1(Ωε) .

• The second term in (55) is bounded by

Cε

(√
ε+

√
ε

H

)
|u− vH |H1(Ωε) ‖f −∇p

∗‖H2(Ω)∩C1(Ω̄) ,

thanks to Lemma 4.7.
• The third term in (55) vanishes. Indeed, on each edge E, we know from (54)

that n · ∇vH − qH n = a + b nEψE with some constants a ∈ R2, b ∈ R and∫
E

(a+ b nEψE) · (u− vH) = 0 by construction of u− vH .

Collecting all these estimates, we deduce that

|u− vH |H1(Ωε) ≤ Cε
(√

ε+H +

√
ε

H

)
‖f −∇p∗‖H2(Ω)∩C1(Ω̄).

This concludes the estimate for the first term of (53).
We now turn to the nonconformity error, i.e. the second term in (53). Let

v ∈ ZH . We use (15) and div v = 0 to compute∫
Ωε
∇(u− uH) : ∇v

=
∑
T∈TH

(∫
Ωε∩T

∇u : ∇v −
∫

Ωε∩T
p′ div v

)
−
∫

Ωε
f · v

=
∑
T∈TH

∫
∂T∩Ωε

v · ((∇u)n− p′n)−
∑
T∈TH

∫
Ωε∩T

(f + ∆u−∇p′) · v

=
∑
T∈TH

∫
∂T∩Ωε

v · ((∇u)n− p′n)−
∑
T∈TH

∫
T

∇p∗ · v .

The first term in the right-hand side above is bounded thanks to Lemma 4.7 by
Cε
(√
ε+

√
ε
H

)
‖f − ∇p∗‖H2(Ω)∩C1(Ω̄) |v|H1 . To bound the second term, we shall
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use IHp
∗ ∈ H1(Ω) as constructed in Lemma 4.3. Observe that∑

T∈TH

∫
T

∇(IHp
∗) · v =

∑
E∈EH

∫
E

IHp
∗ nE · [[v]] = 0 , (56)

since IHp
∗ is a polynomial of degree ≤ 1 on each edge E ∈ EH . Thus, using

Lemmas 4.3 and 4.6,∣∣∣∣∣ ∑
T∈TH

∫
T

∇p∗ · v

∣∣∣∣∣ =

∣∣∣∣∣ ∑
T∈TH

∫
T

∇(p∗ − IHp∗) · v

∣∣∣∣∣
≤ |p∗ − IHp∗|H1(Ω)‖v‖L2(Ω) ≤ εH|p∗|H2(Ω)|v|H1(Ω) . (57)

Finally,

sup
v∈VH\{0}

|a(u− uH , v)|
|v|H1

≤ Cε
[(√

ε+

√
ε

H
+H

)
‖f −∇p∗‖H2(Ω)∩C1(Ω̄) +H|p∗|H2(Ω)

]
,

which proves the estimate for (u− uH) in (20).

Remark 6. We have just seen that the nonconformity error has been treated with
the help of the trick (56)–(57) which requires the jumps of the normal component
of velocities in ZH to be orthogonal to polynomials of degree 1 on any edge. This
is exactly the motivation to introduce the weights CR3 (19). This proof would not
work with CR2 weights, even if the MsFEM bubbles were added, as suggested in
Remark 4.

We turn now to the error estimate for pressure. Using operators ΠH and IH from
Lemmas 4.2 and 4.3, we set p∗H = ΠHIHp

∗ ∈MH , i.e. the L2-orthogonal projection
of IHp

∗ on MH . By interpolation estimates (45), (4.3) and homogenization bounds

‖p∗H − p‖L2(Ωε) ≤ ‖ΠH(IHp
∗ − p∗)‖L2(Ω) + ‖ΠHp

∗ − p∗‖L2(Ω) + ‖p∗ − p‖L2(Ωε)

≤ ‖IHp∗ − p∗‖L2(Ω) + ‖ΠHp
∗ − p∗‖L2(Ω) + ‖p∗ − p‖L2(Ωε)

≤ C(H|p∗|H1(Ω) +
√
ε‖f −∇p∗‖H2(Ω)∩C1(Ω̄)). (58)

Now, in view of the inf-sup lemmas (2.5) and (3.2), there exists vH ∈ VH such that
for any T ∈ TH

div vH = pH − p∗H on T ∩ Ωε and |vH |H1(Ω) ≤
C

ε
‖pH − p∗H‖L2(Ωε) . (59)

Integration by parts element by element yields

‖pH − p∗H‖2L2(Ωε) =

∫
Ωε

(pH − p∗H) div vH

= −
∫

Ωε
f ·vH +

∫
Ωε
∇uH : ∇vH −

∫
Ωε
p∗H div vH

=

∫
Ωε

(∆u−∇(p∗ + p′))·vH +

∫
Ωε
∇uH : ∇vH −

∫
Ωε
p∗H div vH

=

∫
Ωε
∇(uH − u) : ∇vH +

∫
Ωε
p′ div vH +

∑
T∈TH

∫
∂T∩Ωε

vH ·((∇u)n− p′n)

−
∫

Ωε
∇(p∗ − IHp∗)·vH −

∫
Ωε
∇IHp∗·vH −

∫
Ωε
p∗H div vH .



MSFEM FOR STOKES FLOWS: ERROR ESTIMATES 29

In fact, the last two terms above cancel each other. Indeed,

−
∫

Ωε
∇IHp∗·vH −

∫
Ωε
p∗H div vH = −

∑
E∈EH

∫
E

IHp
∗[[n·vH ]]

+

∫
Ωε

(I −ΠH)(IHp
∗) div vH = 0 .

This is zero since [[n · vH ]] is orthogonal to the polynomials of degree ≤ 1 on the
edges and div vH ∈MH .

We can now apply the already proven upper bound for the velocity error (u−uH)
in (20), Lemma 4.7, and bound (57) to conclude

‖pH − p∗H‖2L2(Ωε)

≤ Cε
[(√

ε+

√
ε

H
+H

)
‖f −∇p∗‖H2(Ω)∩C1(Ω̄) +H|p∗|H2(Ω)

]
‖vH‖H1(Ω)

+ ‖p′‖L2(Ωε)‖div vH‖L2(Ω) .

Recalling the properties of vH (59) and the homogenization estimate (29) for p′ =
p− p∗, this entails

‖pH − p∗H‖L2 ≤ C
[(√

ε+

√
ε

H
+H

)
‖f −∇p∗‖H2(Ω)∩C1(Ω̄) +H|p∗|H2(Ω)

]
,

which in combination with (58) gives the error estimate for pressure in (20) by the
triangle inequality.

Remark 7. The MsFEM approach presented here can be extended to the 3D case,
with some caveats. In order to keep a 3D analogue of (54), we should require then
5 weights ωE,i, cf. (19), to allow for arbitrary linear polynomials in the normal
direction on every edge. The numerical analysis of Sections 4 and 5 would then be
extended flawlessly from 2D to 3D.
Extending the homogenization error analysis of Section 3 is much less straight-
forward. Here, in 2D, the analysis is carried out for periodic, separated obstacles.
Physically, this corresponds to a flow between vertical pillars, attached to the immo-
bile wall at the bottom/top of a 3D domain that can be projected on the horizontal
plane. In 3D, homogenization error estimates are available in [36], but they are ob-
tained under the same geometrical assumptions as in 2D: one models a fluid flowing
between isolated sphere-like obstacles, that are not connected between themselves
or to anything else, but remain immobile. The physical relevance of such a model
is debatable. Obstacles made of a connected, porous structure would be closer to
the reality, cf. [1], but a quantitative homogenization error analysis in this case is
not yet available.

6. Numerical results. In this section we show some results of numerical com-
putations, for both variants of our method, CR2 and CR3, cf. (18) and (19). All
calculations are performed in FreeFem++ [22], the scripts are available at the fol-
lowing address: https://github.com/gjankowiak/stokes_msfem.

6.1. Implementation details. The Crouzeix-Raviart MsFEM as presented so far
relies on the exact solutions of the local problems in the construction of the basis
functions. In practice, these problems should be discretized on a mesh sufficiently

https://github.com/gjankowiak/stokes_msfem
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fine to resolve the geometry of obstacles. To avoid complex and ad-hoc grid gener-
ation methods when solving (1)–(3) in Ωε we replace it with the penalized problem,
cf. [32]. To calculate both the basis functions and the reference solutions, we use
the P1-P1 FEM on the uniform Cartesian grid Th of step h� H. As is well known,
this choice of velocity and pressure spaces requires some stabilization which weak-
ens the condition ∇ · ~u = 0. The simplest way to achieve this is by perturbing the
incompressibility constraint with a pressure Laplacian term, see [7] and [32]. Note

that the error introduced by the penalized problem (of order
√
h) is larger than

that of the P1 − P1 FEM stabilization. A more accurate discretization of local
problems, on fine meshes resolving the obstacles, is presented in [18, 19].

The reference solution is calculated on the global mesh of the same size as that
for the MsFEM basis functions.

6.2. Test case with periodic holes. For our first test case we choose Ω = (0, 1)2

and Bε as the set of discs of radius ε/4 placed periodically on a regular grid of
period ε = 1

135 . We solve Stokes equations (1)–(3) on Ωε = Ω \ Bε with f =

100

(
−(x2 − 1/2)
x1 − 1/2

)
. The fine regular Cartesian mesh with h = 1

2160 is used to

compute both the reference solution and the MsFEM basis functions. Numerical
results in Fig. 7 clearly confirm the superiority of the CR3 variant over the CR2
one.

A (coarse) mesh refinement study is reported in Fig. 8. The error curves for
the CR3 velocity approximation are somewhat difficult to interpret. Qualitatively,
they confirm the complex structure of the error, as suggested by the theoretical
estimate (20). The error comes from two principal sources: a standard finite element
approximation of the homogenized pressure (the error of order H in the H1 norm),
and the spurious boundary layers in the MsFEM basis functions near the edges of
the mesh (the error of order

√
ε/H). At the range of H to ε ratios that we were

able to investigate, neither of these factors seems to prevail over the other (similar
findings are reported in [30] in the case of diffusion equation on perforated domains).
Moreover, there should be more subtle sources of the error that are not revealed
by our theoretical analysis. For instance, the approximation seems to improve
significantly when the size of coarse mesh cells H is a multiple of the period of the
obstacle structure ε. This phenomenon is much less noticeable for CR2, presumably
because of the general poor approximation it provides (as expected, CR3 variant of
the method produces a much more accurate solution than CR2 one).

The error curves for p−pH (with pH being the piecewise constant approximation
to the exact pressure p) are qualitatively better than the theoretical bound (20).
Apart from the piecewise approximation pH we also report on an “oscillating” re-
construction pH + πH(uH) as suggested by (11), i.e. reusing the local pressure
contributions πE,i associated to the velocity basis functions ΦE,i. Somewhat sur-
prisingly, this does not improves the accuracy of the approximation, except for our
finest mesh with H = ε.

6.3. Channel flow. We turn now to a more realistic test case: a flow in a rectangle
Ω = (0, 2)× (0, 1) with around 2500 obstacles Bε of size 10−3 randomly distributed
inside the domain, with a parabolic velocity profile prescribed on the left and right
sides of Ω. We solve thus (1)–(2)–(17) with f = 0 and the boundary conditions
u = x2(1−x2)e1 on ∂Ω. The adaptation of our method in view of non-homogeneous
boundary conditions is presented in Remark 3.
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Figure 7. Test case of Section 6.2, cropped to the upper left quad-
rant. From left to right: fluid domain Ωε, with obstacles in black;
the reference solution on the 2160 × 2160 grid; the CR2 MsFEM
solution on 15× 15 grid; same with CR3. On the last 3 plots, the
velocity magnitude is represented using the same color code every-
where.
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Figure 8. Test case of Section 6.2. Left: the relative error in
velocity u − uH in L2 and H1 norms. Right: the relative error in
pressure computed either as p − pH (denoted P0) or as p − pH −
πH(uH) (denoted osc.). The mesh size H varies from 1

15 down to
1

135 with ε = 1
135 . The fractions indicate the ratio 135

H−1 , where we

recall that 135 and H−1 are the number of obstacles and coarse
cells along a given axis, respectively. When this ratio is an integer,
the approximation error improves.

The reference solution and MsFEM CR2 and CR3 solutions (namely the u1 ve-
locity component) are reported in Fig. 9. We observe that the CR3 variant captures
the essential features of the solution even on a very coarse 8 × 4 mesh, while the
solution produced by the CR2 variant is completely wrong. The errors on a suc-
cession of coarse meshes are reported at Fig. 10. As for the pressure, we can note
that its “oscillating” reconstruction pH + πH(uH) is systematically more accurate
than pH alone (contrary to the previous test case), but a significant improvement
is observed only on the coarsest meshes.

6.4. Cavity driven flow. Finally, still in a rectangle Ω = (0, 2) × (0, 1) with 100
randomly distributed obstacles of size about 10−3, we solve (1)–(2)–(17) with f = 0
and u = e1 on the top boundary and u = 0 on the rest of ∂Ω. Some solutions are
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Figure 9. Test case of Section 6.3: channel flow. Top left : fluid
domain Ωε, with obstacles in black. Top right: the reference solu-
tion on the 2160×1080 grid. Bottom: the MsFEM solution on 8×4
grid; CR2 on the left, CR3 on the right. The velocity magnitude is
represented on the contour plots.
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Figure 10. Test case of Section 6.3. Left: the relative error in
velocity u − uH in L2 and H1 norms. Right: the relative error in
pressure computed either as p − pH (denoted P0) or as p − pH −
πH(uH) (denoted osc.). The mesh size H varies from 1

4 down to
1

135 with ε = 1
135 .

represented at Fig. 11 and the errors are reported at Fig. 12. As for the pressure,
the improvement produced by the “oscillating” reconstruction pH + πH(uH) over
pH alone is now observed on all the meshes. Summing up all the observation
with respect to this issue, we conclude that putting some extra effort into the
reconstruction of the oscillating part πH(uH) is beneficial (sometimes significantly)
in the majority of cases.
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Figure 11. Test case of Section 6.4: cavity driven flow. Top left :
fluid domain Ωε, with obstacles in black. Top right: the reference
solution on the 2160 × 1080 grid. Bottom: the MsFEM solution
on 8 × 4 grid; CR2 on the left, CR3 on the right. The velocity
magnitude is represented on the contour plots.
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Figure 12. Test case of Section 6.4. Left: the relative error in
velocity u − uH in L2 and H1 norms. Right: the relative error in
pressure computed either as p − pH (denoted P0) or as p − pH −
πH(uH) (denoted osc.). The mesh size H varies from 1

4 down to
1

135 with ε = 1
135 .
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[3] M. Bebendorf, A note on the Poincaré inequality for convex domains, Zeitschrift für Analysis
und ihre Anwendungen, 22 (2003), 751-756.

[4] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic
principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013), 199-214.

[5] M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequal-

ities for some finite volume schemes, IMA J. Numer. Anal., 35 (2015), 1125-1149.
[6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15

of Texts in Applied Mathematics, 3rd edition, Springer, New York, 2008.

[7] F. Brezzi and J. Pitkaranta, On the stabilization of finite element approximations of the stokes
problem, Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, 10

(1984), 11-19.

[8] D. Brown, Y. Efendiev and V. Hoang, An efficient hierarchical multiscale finite element
method for Stokes equations in slowly varying media, SIAM MMS , 11 (2013), 30-58.

[9] D. Brown, Y. Efendiev, G. Li, P. Popov and V. Savatorova, Multiscale modeling of high

contrast Brinkman equations with applications to deformable porous media, in Poromechanics
V , 235 (2013), 1991-1996.

[10] J. Chu, Y. Efendiev, V. Ginting and T. Hou, Flow based oversampling technique for multiscale
finite element methods, Advances in Water Resources, 31 (2008), 599-608.

[11] M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for

solving the stationary Stokes equations I, RAIRO, 7 (1973), 33-75.
[12] P. Degond, A. Lozinski, B. P. Muljadi and J. Narski, Crouzeix-Raviart MsFEM with Bubble

Functions for Diffusion and Advection-Diffusion in Perforated Media, Comm. Comp. Phys.,

17 (2015), 887-907.
[13] M. Dorobantu and B. Engquist, Wavelet-based numerical homogenization, SIAM J. Numer.

Anal., 35 (1998), 540-559.

[14] W. E and B. Engquist, The heterogeneous multi-scale methods, Comm. Math. Sci., 1 (2003),
87-132.

[15] Y. Efendiev, J. Galvis, G. Li and M. Presho, Generalized multiscale finite element methods.

oversampling strategies, Int. J. Multiscale Comp. Eng., 12 (2014), 465-484.
[16] Y. Efendiev and T. Y. Hou, Multiscale Finite Element Method, Theory and Applications.

Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009.
[17] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159 of Applied

Mathematical Sciences, Springer-Verlag, New York, 2004.

[18] Q. Feng, Development of a Multiscale Finite Element Method for Incompressible Flows in
Heterogeneous Media, PhD Thesis, Université Paris Saclay (COmUE), 2019, https://tel.
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