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a b s t r a c t

In this paper, we investigate the stationary profiles of a nonlinear Fokker–Planck equation with
small diffusion and nonlinear inflow and outflow boundary conditions. We consider corridors with
a bottleneck whose width has a unique global nondegenerate minimum in the interior. In the small
diffusion limit, the profiles are obtained constructively by using methods from geometric singular
perturbation theory (GSPT). We identify three main types of profiles corresponding to: (i) high density
in the domain and a boundary layer at the entrance, (ii) low density in the domain and a boundary
layer at the exit, and (iii) transitions from high density to low density inside the bottleneck with
boundary layers at the entrance and exit. Interestingly, solutions of the last type involve canard
solutions generated at the narrowest point of the bottleneck. We obtain a detailed bifurcation diagram
of these solutions in terms of the inflow and outflow rates. The analytic results based on GSPT are
further corroborated by computational experiments investigating corridors with bottlenecks of variable
width.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In this paper, we investigate the stationary profiles of a non-
inear Fokker–Planck equation with inflow and outflow bound-
ry conditions, describing unidirectional cross-sectional average
lows in corridors with a single entrance and exit. Changes in
he cross-section lead to an increase or decrease of the possible
low inside the corridor; different inflow and outflow conditions
o the formation of boundary layers at the entrance and exit.
n [1] the authors derived the investigated 1D area averaged
odel in the context of pedestrian dynamics from a nonlinear
onvection diffusion equation that was originally proposed by
urger and Pietschmann in [2]. They studied the formation of
oundary layers in the case of strictly monotone cross-sectional
rofiles using geometric singular perturbation theory (GSPT). In
his paper we extend our analysis to corridors with a unique
oint of minimal width which we denote as bottlenecks in the
ollowing.

There has been an increased interest in the derivation and
nalysis of mean-field transport models with finite volume ef-
ects. These models are of particular interest in situations, in
hich solutions should stay within physical reasonable bounds,
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such as the maximum packing density. Examples include the
transport of ions through nanoscale pores [3], pedestrian dynam-
ics [4,5], or cell motility [6,7].

In this paper, we consider pedestrians flows as a prototypical
example, but the results are not limited to these class of models.
We will in particular focus on unidirectional flows, that is a large
group of people moving in the same direction inside a corridor.
The corresponding mean-field PDE is highly nonlinear and often
coupled to other nonlinear PDEs, such as the Eikonal equation,
see [8]. In addition to nonlinear boundary conditions, convection
dominated terms as well as nonlinear interaction terms require
the use of non-standard analytical and computational techniques
to show existence of solutions, analyse their long time behaviour
and perform computational experiments. Stationary profiles of
these PDE models – in the context of pedestrian flows or more
general transport processes with finite volume effects – provide
useful insights into the dynamics and allow to understand and
predict the formation of complex states, such as boundary layers
and segregated states, see e.g. [2,9].

We note that mathematical models for pedestrian dynamics
are in general much more sophisticated than the minimalistic
model considered here. Yet, the effects of bottlenecks in this sim-
plified setting provide interesting insights for pedestrian flows as
well as other mean-field models with finite volume effects. We
refer to [10–12] for a more general overview on the modelling
of pedestrian flows, and to [13] for more information on models

with finite volume effects.
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We reiterate that the investigated PDE model for area aver-
aged flows comprises a nonlinear convection and linear diffusion
term, as well as nonlinear inflow and outflow at the entrance and
exit. The interplay of small diffusion, the geometry of the domain
as well as the inflow and outflow rates lead to the formation of
boundary layers, which we analyse using GSPT.

GSPT is a dynamical systems approach to singularly perturbed
ordinary differential equations started by the pioneering work of
Fenichel [14]. The most common form of GSPT considers systems
of the form
u̇ = f (u, v),

εv̇ = g(u, v),
(1)

where u and v are functions of an independent variable here
defined as x , 0 < ε ≪ 1, and ˙ =

d
dx . Here and in our

ubsequent analysis, the independent variable is representing
pace; however, it is equivalently possible in such systems to
onsider it as a time variable t . For f = O(1) and g = O(1), the
ariable u varies on the slow scale x and the variable v on the fast
cale χ :=

x
ε
, hence System (1) is defined as a slow-fast system.

This (by now conventional) terminology comes from the common
situation in which the independent variable is considered to be
time. Written on the fast scale the equation has the form (here
′
=

d
dχ )

u′
= εf (u, v),

v′
= g(u, v).

(2)

Under suitable assumptions, solutions of System (1) for small
values of ε can be constructed as perturbation of concatenations
of solutions of the two limiting problems obtained by setting
ε = 0 in systems (1) and (2), which are referred to as the
reduced problem and the layer problem, respectively. In GSPT,
these constructions are carried out in the framework of dynamical
systems theory; with the theory of invariant manifolds playing a
particularly important role. In the specific problem analysed in
this paper, well established results and methods from GSPT are
used and adapted for the analysis of a boundary value problem.

Therefore, we do not give a more detailed summary of GSPT,
but refer to [15,16] for more background on GSPT and its many
applications. Applications to boundary value problems on finite
intervals are not common, but can be found e.g. in [17–19]. In
the context of pedestrian dynamics, GSPT has been successfully
applied to study closing channels in [1]. As for fluid dynamics,
GSPT techniques have been successfully applied to characterise
stationary states — see e.g. the case of a viscous gas flow through
nozzles [20,21]. The necessary concepts and results from GSPT are
explained in Section 2 as needed in the context of the specific
problem at hand.

1.1. The mathematical model

In the following, we briefly discuss the underlying modelling
assumption of the area averaged PDE under investigation. A more
detailed derivation can be found in [1]. We note that the following
discussion is not limited to pedestrian crowds, but can also be
used in the context of ion channels (see [3]) or other transport
models with finite size effects.

We consider a undirectional flow of a large pedestrian crowd,
whose density is given by ρ = ρ(x, y, t), in a 2D domain with a
single entrance (at x = 0) and a single exit (at x = L). Further-
more, we assume that the pedestrian density and the vector field
u are symmetric with respect to the x-axis. This assumption is
satisfied if

• the domain is symmetric with respect to the x-axis, and
2

• the initial pedestrian distribution is symmetric with respect
to the x-axis.

We assume that the dynamics are driven by convective transport
and diffusion, in particular the total normalised pedestrian flow
is given by

j = −ε∇ρ + ρ(1 − ρ)u, (3)

where u : R2
→ R is a normalised vector field in the desired

direction (in our case pointing in the general direction of the exit)
and ε > 0 is the diffusion coefficient. We see that the average ve-
locity corresponds to 1−ρ, hence individuals move at maximum
speed 1 at density ρ ≡ 0 and maximum speed 0 if the density
reaches its maximum value ρ ≡ 1. Note that the relation of the
verage density to the average velocity is commonly referred to
s the fundamental diagram, and that similar relations have been
nvestigated in traffic flow; consider for example the well known
ighthill–Whitham–Richard model [22,23].
In [1] the authors derived a 1D area averaged PDE model,

hich is based on the above assumptions and a suitable rescaling
n space. It reads as

tρ(x, t) = ∂x (k(x) (−ε∂xρ(x, t) + ρ(x, t) (1 − ρ(x, t)))) = 0. (4a)

The equation is supplemented with inflow and outflow conditions

j(0, t) = α(1 − ρ(0, t)), (4b)

j(L, t) = βρ(0, t), (4c)

where j(x, t) = −ε∂xρ(x, t) + ρ(x, t) (1 − ρ(x, t)) is the 1D
quivalent of (3). In the derivation of (4), the function k is the
roduct of the width with the cross-sectional average of the first
omponent of u. For simplicity, we refer to k as the width of the
bottleneck, which amounts to assuming that the cross-sectional
average is 1. The parameters α > 0 and β > 0 are the inflow and
outflow rate, respectively.

The boundary condition (4b) describes the inflow at the en-
trance; the inflow is maximal if the entrance is empty (ρ ≡ 0), but
decreases to zero when approaching the maximum density ρ ≡ 1.
At the exit (4c) we do not assume that the outflow is limited by
the maximum capacity. Hence, the outflow rate is proportional to
the density of individuals at the exit.

In [1] the existence of a unique stationary solution of (4) has
been established in great generality by PDE methods, thus, it re-
mains to understand its structure and dependence on parameters.

1.2. Content and organisation of the paper

In this paper we continue and extend the analysis of stationary
profiles for system (4) in [1], where a detailed analysis of station-
ary profiles and their dependence on the inflow and outflow rates
α and β was given for corridors with monotonically decreasing
(or increasing) functions k. Recall, that smaller values of the func-
tion k account for reduced mobility in narrower regions. It was
shown in [1] that the nonlinear inflow and outflow conditions
lead to the formation of boundary layers at the entrance or exit.

Building on the approach in [1] we now consider the impor-
tant case of corridors, whose width has a unique minimum. This
setting corresponds to functions k which have a unique global
minimum at x = x∗

∈ (0, L). In the following, we refer to
omains of this type as corridors with bottlenecks (or sometimes
nly bottlenecks). Throughout this paper we will, without loss
f generality, assume that L = 1. Therefore, we investigate the

stationary states of system (4), so that the dependency on t is
dropped, and we write j(x) and ρ(x) from now on. These are then
described by

∂ J = ∂ (k(x)j(x)) = 0 , (5a)
x x
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here j(x) = −ε∂xρ(x)+ρ(x) (1−ρ(x)) coupled with the following
oundary conditions

= α (1 − ρ) at x = 0,
= βρ at x = 1.

(5b)

e characterise all profiles for different inflow and outflow rates
and β in the singular limit ε = 0. We identify 8 regions in pa-

ameter space corresponding to profiles with different structures.
wo of these regions correspond to high density profiles, two
ther regions correspond to low density profiles. In our analytical
ramework, low density corresponds to ρ < 1/2 and high density
to ρ > 1/2. These profiles are quite similar to profiles considered
in [1] and are only weakly affected by the presence of the bottle-
neck. Due to the bottleneck, a new interesting class of profiles
exists, which corresponds to solutions starting at high density
and making a transition to low density in the region where the
function k attains its minimum. Since this type of solutions allows
for four possible configurations of boundary layers, this leads to
four types of transitional density profiles. We refer to these four
types of profiles as transitional profiles.

Our GSPT analysis shows that these transitional profiles are
caused by the existence of canard solutions passing through a
folded saddle [24]. Canard solutions are solutions of singularly
perturbed ODEs which follow repelling slow manifolds for a
considerable time. The essence of the canard phenomenon is
that these solutions lie exponentially close to the repelling slow
manifold and are therefore able to follow it for some time before
they are ultimately repelled from it. Clearly, special mechanisms
are needed to bring solutions of interest exponentially close to
the repelling slow manifold. The occurrence of canard solutions
in boundary value problems is conceptually less surprising than
their occurrence in initial value problems, nevertheless we are
not aware of similar works or results in the context of nonlinear
boundary value problems.

The three profile types described above have been observed
before, in a context related to the present problem. In particular,
the 2D equation (3) was derived in [2] as the continuous limit
of the so-called Totally Asymmetric Simple Exclusion Process
(TASEP). The TASEP is a one-dimensional lattice stochastic model
where particles move from the left to the right [25]. Two param-
eters, α and β like in the present work, correspond to the entry
and exit rates, respectively. It is still under active investigation
and provides a generic tool to model out-of-equilibrium transport
processes or systems with open boundaries, from vehicular traf-
fic [26] to pedestrians fluxes and intra-cellular molecular trans-
port or biopolymerization [27]. The mean-field approximation of
the TASEP has three phases: low-density (LD in the literature) for
α < β , β ≤ 1/2, high-density (HD) for β < α, α ≤ 1/2, and
maximum current (MC) for α, β ≥ 1/2 [28,29]. The situation is
imilar for the present model for k ≡ const., see [2, Section 4].
The rest of the paper is organised as follows. The GSPT analysis

eading to the main result on the structure of solutions is carried
ut in Section 2. In Section 3 the analytical results are illustrated
nd confirmed by computational experiments for different chan-
els. In Section 4 we conclude with an interpretation of the main
eatures of the constructed solutions in the various regimes in a
anner which could be useful in further studies of unidirectional

low dynamics.

. GSPT analysis

In this section, the stationary states associated to (5) are
nvestigated in a bottleneck scenario. The problem is rewritten
s an equivalent boundary value problem for an autonomous
hree-dimensional system of first order differential equations in

low–fast form. As explained in the introduction, we will identify

3

8 regions in the (α, β) parameter space, in which the stationary
profiles have the same structure in the singular limit ε = 0.
We construct singular solutions of the boundary value problem
as concatenations of solutions of the corresponding layer- and
reduced problem. These singular solutions are then shown to
persist for ε small. The profiles which exist in four of these regions
involve a canard solution generated at a point corresponding to
the minimum of k.

For the rest of this paper we make the following assumption
which is crucial for our approach and results.
Main Assumption: The function k ∈ C2([0, 1]) is positive and
has a unique global nondegenerate minimum at x = x∗

∈ (0, 1)
satisfying

k′(x∗) = 0, k′′(x∗) > 0. (6)

Remark 1. Here we denote the derivative of the coefficient
function k as k′. Below we will also consider the function g :=

k′/k, its derivative will also be denoted as g ′. We would like to
point out that starting with Eq. (10) the symbol ′ will be mainly
used to denote derivatives of the sought solution with respect to
a rescaled fast variable. The above slight abuse of notation should
not lead to any confusion.

By introducing the function

g :=
k′

k
e can rewrite Eq. (5) as the system
dj
dx

= −g(x)j,

ε
dρ
dx

= ρ(1 − ρ) − j.
(7)

Analogously to [1], this system can be transformed into an au-
tonomous system by introducing the variable ξ = x as a new
dynamic variable and including the trivial equation dξ

dx = 1. Thus,
we obtain the following autonomous reformulation of Eq. (7)

j̇ = −g(ξ )j,
ξ̇ = 1,

ερ̇ = ρ(1 − ρ) − j,
(8)

where the above assumptions on k identically apply with ξ ∗
= x∗,

with boundary conditions

j = α (1 − ρ) at ξ = 0 ,

j = βρ at ξ = 1 .
(9)

System (8) is a slow-fast system, where the dynamics of ρ occur
on the fast scale, while the dynamics of j and ξ take place on the
slow scale. On the fast scale, System (8) becomes

j′ = −εg(ξ )j,
ξ ′

= ε,

ρ ′
= ρ(1 − ρ) − j.

(10)

s explained in the introduction, letting ε → 0 in Eqs. (8)
and (10) leads to two limiting subproblems – i.e. the reduced
problem and the layer problem, respectively – which are simpler
to analyse. The layer problem (ε = 0 in (10)) is given by

j′ = 0,
ξ ′

= 0,
ρ ′

= ρ(1 − ρ) − j,
(11)

nd describes the dynamics of the fast variable ρ for fixed j and ξ

values. In this framework, boundary layers (i.e. solutions varying
rapidly near the boundary for small ε) correspond to orbits of
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Fig. 1. Fast dynamics in (j, ρ)-space for a fixed value of ξ . The blue curve
represents C0 consisting of the two branches Ca

0 (attracting), Cr
0 (repelling), and

the fold line F . The green lines indicate orbits of the layer problem (11), while
the blue dot represents the line of fold points F .

the fast flow at ξ = 0 and/or ξ = 1 in the singular limit. The
manifold of equilibria of the layer problem (11) is known as the
critical manifold

C0 := {(j, ξ , ρ) : j = ρ(1 − ρ)} , (12)

which is a folded surface in (j, ξ , ρ) space. The critical manifold
C0 is the union of two submanifolds Ca

0 (ρ > 1
2 ) and Cr

0 (ρ < 1
2 )

– which are attracting and repelling, respectively – and a line of
fold points

F :=

{
(j, ξ , ρ) : j =

1
4
, ρ =

1
2

}
, (13)

s shown in Fig. 1. Fenichel Theory [14] implies that away from
he fold line F the submanifolds Ca

0 and Cr
0 perturb to (non-unique)

attracting and repelling slow manifolds Ca
ε and Cr

ε for ε small.
If the reduced flow reaches the fold line F transversally at a

point p ∈ F , the point p is a jump point where a transition to fast
motion close to solutions of the layer problem occurs, see [30].
At exceptional points p ∈ F where this transversality condition
is violated, solutions of the reduced flow may cross through p
from Ca

0 to Cr
0, or vice versa. Such solutions are called (singular)

canards, the corresponding p ∈ F is a canard point. The least
egenerate canard points have been classified and analysed by
he blow-up method as folded saddles and folded nodes in [24].
here it is shown that these (singular) canards persist as canard
olutions, i.e. solutions corresponding to intersections of the slow
anifolds Ca

ε and Cr
ε near p for ε small. Thus, the existence of

anard solutions provides a mechanism that solutions lying in
or exponentially close to) the attracting slow manifold Ca

ε can
e continued in (or exponentially close to) the repelling slow
anifold Cr

ε . The less counter-intuitive situation that solutions
ying in the repelling slow manifold can be continued in (or close
o) the attracting slow manifold is also possible. Canard solutions
f this second type are often referred to as faux canards.
In the following, we analyse the reduced flow on C0. We will

how that a canard point of folded saddle type occurs at the point

∗
=

(
1
4
, ξ ∗,

1
2

)
(14)

here ξ ∗ is the location of the global minimum of the function k.
4

The reduced problem is very simple

j̇ = −g(ξ )j, (15a)
˙ = 1. (15b)

he phase space for the reduced problem is [0, 1/4] × [0, 1],
here j = 1/4 corresponds to the fold line. It follows from

Eq. (5a) that k(ξ ) j is a conserved quantity, hence the level lines
of this function give the orbits of the reduced problem (15).

However, as always for folded critical manifolds, the classifi-
cation of the reduced flow – in particular at the fold line and at
canard points – is more conveniently carried out in the variables
(ξ, ρ) by using the constraint j = ρ(1 − ρ) which defines C0.
ifferentiating the constraint with respect to x gives j̇ = (1−2ρ)ρ̇,
hich allows to rewrite the reduced problem as

ξ̇ = 1,
1 − 2ρ) ρ̇ = −g(ξ ) ρ(1 − ρ).

(16)

ith ξ ∈ [0, 1] and ρ ∈ [0, 1]. System (16) is singular at the
old line F , i.e. for ρ = 1/2. This system can be desingularised by
ultiplying the right-hand side by 1 − 2ρ and dividing out this

actor in the ρ equation. This gives the desingularised reduced
ystem

ξ̇ = 1 − 2ρ,

˙ = −g(ξ ) ρ(1 − ρ).
(17)

his multiplication of the right-hand side by (1−2ρ) corresponds
o a ρ-dependent rescaling of the independent variable x, which
oes not change orbits of the system away from the fold line
see [31, Section 1.5] for further details about this procedure).
owever, for ρ > 1/2, the flow direction is reversed, which needs
o be taken into account.

We now collect the properties of the reduced problem, which
re needed in the analysis of the boundary value problem (8)–
9). These properties depend on properties of the function g =
′/k. Our main Assumption implies that the global nondegenerate
inimum of k at ξ ∗ is a simple zero of g corresponding to a saddle
oint (ξ ∗, 1/2) of the desingularised reduced problem (17). Other
eros of g lead to additional equilibria, which are discussed only
riefly, since we show later that these play no role in the analysis
f the boundary value problem.

emma 1. The reduced problem (16) has the following properties:

1. The phase portrait is symmetric with respect to the line ρ =

1/2, which corresponds to the fold line F .
2. The variable ξ is increasing along all orbits, i.e. the flow is

from left to right.
3. The lines ρ = 0 and ρ = 1 are invariant.
4. In regions with g(ξ ) > 0, the variable ρ is decreasing along

orbits for 1/2 < ρ < 1 and is increasing for 0 < ρ < 1/2.
In regions with g(ξ ) < 0, this monotonicity is reversed. The
variable ρ is constant in regions with g(ξ ) = 0, corresponding
to regions where the width of the corridor is constant.

5. The line ρ = 1/2 is a line of singularities. Points (ξ, 1/2) with
g(ξ ) > 0 are reached in finite time by the forward flow and
the derivative ρ̇ blows up there. Similarly, points (ξ, 1/2) with
g(ξ ) < 0 are reached in finite time by the backward flow.

6. The point p∗
=
(
ξ ∗, 1

2

)
is a canard point of folded saddle type.

7. There exist two (symmetric with respect to the line ρ =

1/2) singular canard solutions with orbits Sc and S̃c passing
smoothly through the singularity located at p∗. The canard Sc
crosses from the attracting part of the critical manifold to the
repelling one, the (faux) canard S̃c crosses from the repelling
part of the critical manifold to the attracting one.
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Fig. 2. Illustration of the reduced flow associated to Eqs. (8)–(9) described in
emma 1 for k(ξ ) = 1 + a cos

( 2πξ

b

)
and a = 0.3, b = 1.5. The solid grey line

indicates the line of fold points F (see (13)), whereas the blue dot corresponds
to the canard point of folded saddle type p∗ . The cyan curves correspond to the
canard Sc (solid line) and the (faux) canard S̃c (dashed line). The shaded red
area represents the region N defined in Remark 3, which plays no role in the
construction of solutions of the boundary value problem (8)–(9).

8. The (faux) canard orbit S̃c starts at ξ = 0, ρ = ρ0
c ∈ (0, 1/2)

and reaches ξ = 1 at ρ = ρ1
c ∈ (0, 1/2). The canard orbit Sc

starts at ξ = 0, ρ = 1 − ρ0
c ∈ (1/2, 1) and reaches ξ = 1 at

ρ = 1 − ρ1
c ∈ (1/2, 1).

9. Solutions starting at ξ = 0 with ρ ∈ [0, ρ0
c ) reach ξ = 1

with ρ ∈ [0, 1 − ρ1
c ). Solutions starting at ξ = 0 with

ρ ∈ (1 − ρ0
c , 1] reach ξ = 1 with ρ ∈ (ρ1

c , 1] .
10. Solutions starting at ξ = 0 with ρ ∈ (ρ0

c , 1 − ρ0
c ) do not

cross the line ξ = ξ ∗, in particular, they do not reach the line
ξ = 1. Solutions reaching ξ = 1 with ρ ∈ (1−ρ1

c , ρ
0
c ) do not

cross the line ξ = ξ ∗ in backwards time, in particular, they
do not reach the line ξ = 0.

11. An isolated zero of g at say ξ0 ̸= ξ ∗ corresponds to another
folded singularity at (ξ0, 1/2), which is a folded saddle for
g ′(ξ0) > 0 and a folded centre for g ′(ξ0) < 0. A more
degenerate zero of g corresponds to a more degenerate folded
singularity. If g is zero on an interval [ξ1, ξ2], the density ρ
is constant there. In this situation [ξ1, ξ2] × {1/2} is a line
of equilibria, the endpoints of this line are again degenerate
folded singularities.

The properties of the reduced problem described in the Lemma
are illustrated in Fig. 2 for a function k which satisfies k′ < 0 in
(1, ξ ∗) and k′ > 0 in (ξ ∗, 1).

Remark 2.

(a) The notation Sc and S̃c for the canard orbits is chosen to
be consistent with the notation we introduce below for
other orbits of the reduced problem in the construction of
singular solutions of the boundary value problem.

(b) The property 11. associated with additional zeros of g
(which may occur under our rather general main Assump-
tion on the function k) is mainly included for completeness.
In Remark 4, we show that they play no role in the con-
struction of solutions of the boundary value problem, due
to property 10. of the Lemma.
5

Proof. Properties 1.–5. follow directly from the equations. The
point p∗ is an equilibrium for the desingularised system (17). The
matrix associated with the linearisation of (17) at p∗ is

A :=

(
0 −2

−
g ′(ξ∗)

4 0

)
. (18)

ince g ′(ξ ∗) = k′′(ξ ∗)/k(ξ ∗), the assumption k′′(ξ ∗) > 0 translates
nto g ′(ξ ∗) > 0. This gives det A = −

g(ξ∗)
2 < 0, hence p∗ is a

saddle point for (17) with associated smooth stable and unstable
manifolds. For the reduced problem (16) – with the flow direction
reversed for ρ > 1/2 – the point p∗ is a folded saddle [24]. Due to
a cancellation of a simple zero on both sides of the ρ-equation in
(16), the stable manifold of the saddle is now the (faux) canard S̃c ,
orresponding to a smooth solution passing through the point p∗.
imilarly, the unstable manifold of the saddle becomes the canard
c . This proves properties 6. and 7.
The conserved quantity k(ξ )j of Eq. (15a) translates into the

onserved quantity

(ξ, ρ) = k(ξ )ρ(1 − ρ) > 0 (19)

f the desingularised system (17), i.e. the level lines of H give
he phase portrait. The canard orbits Sc and S̃c are the level lines
(ξ, ρ) =

k(ξ∗)
4 . Since k has its global minimum at ξ ∗, the canard

orbits cannot intersect the (fold) line ρ = 1/2. Since in addition,
the canard orbits cannot intersect the lines ρ = 0, ρ = 1 where

= 0, the canard orbits extend to ξ = 0 and ξ = 1. Thus,
ssertion 8. follows, with ρ0

c ∈ (0, 1/2) and ρ1
c ∈ (1/2, 1) defined

s the solutions of the equations

(0, ρ0
c ) =

k(ξ ∗)
4

, H(1, ρ1
c ) =

k(ξ ∗)
4

.

The solutions described in Assertion 9. lie on level lines with
H(ξ, ρ) > H(ξ ∗, 1/2), the solutions described in Assertion 10. lie
n level lines with H(ξ, ρ) < H(ξ ∗, 1/2). Together with 8. this
mplies 9. and 10. □

emark 3. Some of the results presented in Lemma 1 can be
aturally interpreted in terms of the bottleneck application. The
onotonicity property 4. relates to the fact that g(ξ ) > 0 is
quivalent to k′(x) > 0, i.e. a widening part of the channel in
hich the density decreases, and vice versa for g(ξ ) < 0. Property
. is linked to the fact that orbits of the reduced flow lying on the
epelling part of the critical manifold Cr

0 (ρ < 1/2) correspond to
ow density profiles. Similarly, orbits of the reduced flow lying on
he attracting part of the critical manifold Ca

0 (ρ > 1/2) represent
igh density profiles. Finally, the canard orbit Sc (resp. S̃c) corre-
pond to profiles along which changes from high to low (resp. low
o high) density occur (see properties 7.-8.). The canard point
∗ is the only point where transitions between different density
egimes without layers are possible (see property 6.).

The canard Sc and the (faux) canard S̃c on C0 can be described
s graphs by means of the following functions

+

c (ξ ) :=
1
2

(
1 +

√
1 −

k (ξ ∗)

k(ξ )

)
, (20a)

−

c (ξ ) :=
1
2

(
1 −

√
1 −

k(ξ ∗)
k(ξ )

)
, (20b)

s follows

c :=
{
(ξ, ρ) : 0 ≤ ξ ≤ ξ ∗, ρ = ρ+

c (ξ )
}

∪
{
(ξ, ρ) : ξ ∗

≤ ξ ≤ 1, ρ = ρ−

c (ξ )
}
,

˜c :=
{
(ξ, ρ) : 0 ≤ ξ ≤ ξ ∗, ρ = ρ−

c (ξ )
}{

∗ +
} (21)
∪ (ξ, ρ) : ξ ≤ ξ ≤ 1, ρ = ρc (ξ ) .
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r

Fig. 3. Schematic representation of L (orange line) and L+ (orange curve) for (a) 0 < α < 1

2 and (b) 1
2 < α < 1. The orange dot corresponds to l, the blue curve

epresents C0 , and the green lines correspond to the orbits of the layer problem.
b
l

The values ρ0
c and ρ1

c introduced in Lemma 1 (corresponding
to the ρ-values of the (faux) canard) at ξ = 0 and ξ = 1,
respectively, are then given by

ρ0
c = ρ−

c (0), ρ1
c = ρ+

c (1). (22)

The points of the canard Sc corresponding to ξ = 0 and ξ = 1
in (j, ξ , ρ)-space which play an important role in the following
analysis are

p0c :=
(
ρ0
c (1 − ρ0

c ), 0, 1 − ρ0
c

)
,

p1c :=
(
ρ1
c (1 − ρ1

c ), 1, 1 − ρ1
c

)
.

(23)

Remark 4. The function g may have zeros ξ ̸= ξ ∗. All these
points (ξ, 1/2) are equilibria of the desingularised system (17)
but these equilibria and possible canard solutions associated with
them are confined to the open region N bounded by S̃c from
below and by Sc from above for ξ < ξ ∗, and by Sc from below and
by S̃c from above for ξ > ξ ∗ (see Fig. 2). Since no transitions from
ξ = 0 to ξ = 1 are possible through the region N , it plays no role
in the construction of solutions of the boundary value problem.
Since other folded singularities associated with local minima or
maxima of k and their associated canard solutions are confined
to N , these also play no role for the boundary value problem.

We now begin the construction of solutions of the boundary
value problem (8)–(9) by combining solutions of the reduced
problem with solutions of the layer problem in such a way that
the boundary conditions are satisfied. Here, it is important to
keep in mind that solutions can jump from points on the repelling
branch Cr

0 of the critical manifold to the attracting branch Ca
0 , but

not vice versa.
In [1] we have constructed singular solutions in the case

of a closing channel using a shooting strategy: we evolved the
manifold of boundary conditions at ξ = 0 forward and checked
whether it intersected the manifold of boundary conditions at
ξ = 1. This constructive procedure allowed to identify the initial
and final values of ρ (namely ρ0 and ρ1) for ε = 0. In the
bottleneck scenario, however, the presence of a canard point lying
in the interior of the spatial domain [0, 1] implies that singular
orbits containing segments of the canards Sc or S̃c can make slow
transitions between the branches of the critical manifold. Most
importantly, this allows transitions from the attracting branch
back to the repelling branch. We will show that this leads to the
new type of transitional profiles, described in the introduction.
Due to the special role of the canard point p∗, we modify the
shooting strategy by evolving also the manifold of boundary con-
ditions at ξ = 1 (backwards) and checking the intersection with
6

the forward evolution of the manifold of left boundary conditions
at ξ = ξ ∗, where the canard point p∗ lies.

In the dynamical systems framework, boundary conditions (9)
correspond to two lines in the (j, ξ , ρ)-space, satisfying j = α(1−

ρ) at ξ = 0 and j = βρ at ξ = 1, respectively. However,
admissible boundary conditions – i.e. boundary conditions for
which it is possible to construct a solution to the boundary
value problem under study – correspond to subsets of these lines
consisting of points attracted to Ca

0 at ξ = 0 by the forward
flow of the layer problem and to Cr

0 by the backward flow of the
layer problem at ξ = 1 (see Figs. 3–4). These sets of admissible
boundary conditions at ξ = 0 and ξ = 1 are given explicitly as

L := {(α(1 − s), 0, s) : ρα ≤ s ≤ 1} , (24a)

R :=
{
(βt, 1, t) : 0 ≤ t ≤ ρβ

}
. (24b)

Here

ρα =

{
α if α ≤

1
2 ,

1 −
1
4α if α ≥

1
2 ,

(25)

and

ρβ =

{
1 − β if β ≤

1
2 ,

1
4β if β ≥

1
2 .

(26)

The lower and upper bounds ρα and ρβ for the density ρ are
caused by the slow-fast structure of the flow: if we would con-
sider a starting point (α(1 − ρ), 0, ρ) with 0 ≤ ρ < ρα , the
orbit would be immediately repelled to infinity from C0, hence
connecting to the boundary conditions at ξ = 1 is impossible.
Analogously, points satisfying (βρ, 1, ρ) with ρβ < ρ ≤ 1 cannot
e endpoints of the singular orbits, since they are repelling for the
ayer problem.

Thus, the initial and final points of the singular orbits – p0 and
p1, respectively – must satisfy

p0 ∈ L, and p1 ∈ R. (27)

The manifold L intersects with C0 at (0, 0, 1) and

l = (α(1 − α), 0, α), (28)

while R intersects with C0 at (0, 1, 0) and

r = (β(1 − β), 1, 1 − β). (29)

For ε = 0, the variable ξ evolves only under the reduced flow
(16). Therefore, in order for the singular solution to evolve from
ξ = 0 to ξ = 1, we must connect L and R to C . The points l and r
0
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Fig. 4. Schematic representation of R (purple line) and R− (purple curve) for (a) 0 < β < 1
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2 < β < 1. The purple dot corresponds to r , the blue curve
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lready belong to C0. Other points on L and R can reach C0 using
he layer problem (11). Tracking the evolution of L by means of
he layer problem at ξ = 0 until it reaches C0, and analogously
he evolution of R backwards until the layer problem at ξ = 1
ntersects C0, yields two sets (shown in Figs. 3–4):

L+
:=
{(

α(1 − s), 0, ρ+(0, s)
)

: ρα ≤ s ≤ 1
}
, (30a)

R−
:=
{(

βt, 1, ρ−(1, t)
)

: 0 ≤ t ≤ ρβ

}
. (30b)

In the following, we use the symbol ρ+(0, s) to indicate the ρ-
value (greater than or equal to 1

2 ) reached by the point (α(1 −

), 0, s) after its transition from L to C0 by means of the layer
roblem. If the solution (ξ, ρ) of the reduced flow (16) starting at
0, ρ+(0, s)) reaches ξ = ξ ∗, we denote its value of ρ at ξ = ξ ∗

y ρ+ (ξ ∗, s). In an analogous manner, we introduce the symbol
−(1, t) to indicate the ρ-value (less than or equal to 1

2 ) reached
y the point (βt, 1, t) after its transition from R to C0 by means
f the layer problem. If the solution (ξ, ρ) of the reduced flow
tarting at (1, ρ−(1, t)) and flowing backwards reaches ξ = ξ ∗,
e denote its value of ρ at ξ = ξ ∗ by ρ− (ξ ∗, t).
In general, the explicit expressions for ρ+ (ξ , s) and ρ− (ξ , t)

re given by

ρ+ (ξ , s) =
1
2

(
1 +

√
1 − 4 s (1 − s)

k(0)
k(ξ )

)
,

− (ξ , t) =
1
2

(
1 −

√
1 − 4 t (1 − t)

k(1)
k(ξ )

)
.

(31)

When α < 1
2 , the reduced flow can either start on L+ or at l,

hile for α > 1
2 it must start on L+. Analogously, when β < 1

2 ,
he reduced flow can either end on R− or at r , while for β > 1

2
t must end on R−.

Based on this geometric interpretation of the boundary con-
itions, we proceed with the construction of the singular orbits
y connecting L+

∪ l and R−
∪ r by means of the reduced flow

16) on C0. In doing so, we first let L+ in (30a) flow forward and
− in (30b) flow backwards by means of the reduced flow until
= ξ ∗: we call the corresponding sets L+

ξ∗ and R−

ξ∗ , respectively:

L+

ξ∗ :=
{(

ρ+
(
ξ ∗, s

) (
1 − ρ+

(
ξ ∗, s

))
,

ξ ∗, ρ+
(
ξ ∗, s

))
: ρα ≤ s ≤ 1

}
, (32a)

−

ξ∗ :=
{(

ρ−
(
ξ ∗, t

) (
1 − ρ−

(
ξ ∗, t

))
,

ξ ∗, ρ−
(
ξ ∗, t

))
: 0 ≤ t ≤ ρβ

}
. (32b)
7

f α ≥
1
2 then l ∈ L+, and the evolution of l by means of the

reduced flow is already included in L+

ξ∗ . If α < 1
2 then l /∈ L+,

nd therefore the corresponding point at ξ = ξ ∗ must be defined
eparately as

ξ∗ :=
{(

ρ+
(
ξ ∗, α

) (
1 − ρ+

(
ξ ∗, α

))
, ξ ∗, 1 − ρ+

(
ξ ∗, α

))}
. (33)

nalogously, if β ≥
1
2 then r ∈ R−, and the backwards evolution

of r by means of the reduced flow is already included in R−

ξ∗ . If
< 1

2 , however, r /∈ R−, and therefore the corresponding point
at ξ =

1
2 must be defined separately as

rξ∗ :=
{(

ρ−
(
ξ ∗, 1 − β

) (
1 − ρ−

(
ξ ∗, 1 − β

))
,

ξ ∗, 1 − ρ−
(
ξ ∗, 1 − β

))}
. (34)

We note that the point lξ∗ exists if and only if α ≤ ρ0
c ; anal-

ogously, the point rξ∗ exists if and only if β ≤ 1 − ρ1
c (see

Remark 4).
A singular orbit is then given by matching the slow and fast

pieces obtained by investigating the reduced and layer problems,
respectively. More specifically, a singular orbit exists if and only
if the intersection between the sets L+

ξ∗ ∪ lξ∗ and R−

ξ∗ ∪ rξ∗ is non-
mpty, and it is unique if this intersection consists of one point.
n example of a singular solution constructed via the shooting
trategy described above is provided in Fig. 5.
In addition to the canards Sc and S̃c introduced above, our

nalysis of the existence and structure of singular orbits is based
n four special orbits Sα , Sβ , S̃α , S̃β of the reduced flow (see Fig. 6):

• The orbit Sα , defined for each α ∈ (0, 1), is the one starting
at ρ = α at ξ = 0. For α < ρ0

c or α > 1 − ρ0
c , the

corresponding final value of ρ at ξ = 1 is denoted by ρ∗(α).
For ρ0

c < α < 1 − ρ0
c , Sα ends on the fold line F and hence

Sα ⊂ N . For α = ρ0
c or α = 1 − ρ0

c , Sα ends on the canard
point p∗ at ξ = ξ ∗, and its continuation for ξ ∈ [ξ ∗, 1] is
therefore not uniquely defined.

• The orbit Sβ , defined for each β ∈ (0, 1), is the one ending
at ρ = 1 − β at ξ = 1. For β < 1 − ρ1

c or β > ρ1
c , the

corresponding initial value of ρ at ξ = 0 is denoted by ρ∗(β).
For 1 − ρ1

c < β < ρ1
c , Sβ ends on the fold line F and hence

Sβ ⊂ N . For β = 1 − ρ1
c or β = ρ1

c , Sβ ends on the canard
point p∗ at ξ = ξ ∗ backward in ξ , and its continuation for
ξ ∈ [0, ξ ∗

] is therefore not uniquely defined.
• For i = α, β , we define S̃i as the reflection of the orbit Si

with respect to ρ =
1 .
2
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Fig. 5. Schematic representation of a singular solution of (8)–(9) with a = 0.3,
= 1.5, α = 0.3, and β = 0.6 (i.e. (α, β) ∈ G3). The solution has boundary

ayers at ξ = 0 and ξ = 1, while the slow portion of the orbit coincides with Sc .
The red dots at ξ = 0 and ξ = 1 correspond to the initial and final point p0 and
p1 , respectively. The dashed grey line represents the line of fold points F . The
shaded green regions correspond to the union of fast orbits starting from L (at
ξ = 0) and R (at ξ = 1, backwards). Analogously, the blue regions correspond
to the union of slow orbits on C0 starting from L+ for ξ ∈ [0, ξ ∗

] and from
R− (backwards) for ξ ∈ [ξ ∗, 1]. The orange curves represent the manifold L of
boundary conditions at ξ = 0 together with its projection on C0 at ξ = 0 under
the action of the fast flow (i.e. L+) and the one at ξ = ξ ∗ under the action of
the slow flow (i.e. L+

ξ∗ ). Analogously, the purple curves represent the manifold
R of boundary conditions at ξ = 1 together with its projection on C0 at ξ = 1
nder the action of the (backward) fast flow (i.e. R−) and the one at ξ = ξ ∗

nder the action of the (backward) slow flow (i.e. R−

ξ∗ ).

Depending on the values of α and β , one of the orbits Si, S̃i,
i = c, α, β , corresponds to the slow part of the singular orbits we
will construct.

Changing α and β influences the orbits Sα , S̃α and Sβ , S̃β . We
will show in the following that the (α, β)-dependent mutual
osition of these orbits determines the type of singular solution
f the boundary value problem.
By using the conserved quantity (19), the respective values of

∗(α) and ρ∗(β) can be computed explicitly:

ρ∗(α) :=

⎧⎪⎨⎪⎩
1
2

(
1 −

√
1 − 4α(1 − α) k(0)k(1)

)
if α < ρ0

c ,

1
2

(
1 +

√
1 − 4α(1 − α) k(0)k(1)

)
if α > 1 − ρ0

c ,

(35a)

ρ∗(β) :=

⎧⎪⎨⎪⎩
1
2

(
1 +

√
1 − 4β(1 − β) k(1)k(0)

)
if β < 1 − ρ1

c ,

1
2

(
1 −

√
1 − 4β(1 − β) k(1)k(0)

)
if β > ρ1

c .

(35b)

Note that α = 1 − ρ∗(β) is equivalent to β = ρ∗(α).
Based on this, we divide the (α, β)-parameter space into eight

regions Gi, i = 1, . . . , 8 defined via the following curves γij (here
he indices refer to the adjacent regions):

12 :=
{
(α, β) : 0 < α ≤ ρ0

c , β = 1 − ρ∗(α)
}
, (36a)

13 :=
{
(α, β) : α = ρ0

c , 1 − ρ1
c ≤ β ≤ ρ1

c

}
, (36b)

:=
{
(α, β) : α = 1 − ρ (β), 0 < β ≤ 1 − ρ1} , (36c)
17 ∗ c

8

24 :=
{
(α, β) : α = ρ0

c , ρ1
c ≤ β < 1

}
, (36d)

34 :=
{
(α, β) : ρ0

c ≤ α ≤ 1 − ρ0
c , β = ρ1

c

}
, (36e)

35 :=
{
(α, β) : α = 1 − ρ0

c , 1 − ρ1
c ≤ β ≤ ρ1

c

}
, (36f)

37 :=
{
(α, β) : ρ0

c ≤ α ≤ 1 − ρ0
c , β = 1 − ρ1

c

}
, (36g)

46 :=
{
(α, β) : α = 1 − ρ0

c , ρ1
c ≤ β < 1

}
, (36h)

56 :=
{
(α, β) : 1 − ρ0

c ≤ α < 1, β = ρ1
c

}
, (36i)

58 :=
{
(α, β) : 1 − ρ0

c ≤ α < 1, β = 1 − ρ1
c

}
, (36j)

78 :=
{
(α, β) : α = ρ∗(β), 0 < β ≤ 1 − ρ1

c

}
. (36k)

he above curves correspond to situations where some of the
rbits Si, S̃i, i = c, α, β defined above coincide. In particular:

• for (α, β) ∈ γ12, we have Sα = Sβ (lying in Cr
0);

• for (α, β) ∈ γ13 ∪γ24, we have S̃c = Sα for ξ ∈ [0, ξ ∗
] (i.e. up

to the canard point p∗);
• for (α, β) ∈ γ17, we have Sα = S̃β ;
• for (α, β) ∈ γ34∪γ56, we have Sc = Sβ for ξ ∈ [ξ ∗, 1] (i.e. up

to the canard point p∗);
• for (α, β) ∈ γ35 ∪γ46, we have Sc = Sα for ξ ∈ [0, ξ ∗

] (i.e. up
to the canard point p∗);

• for (α, β) ∈ γ37∪γ58, we have S̃c = Sβ for ξ ∈ [ξ ∗, 1] (i.e. up
to the canard point p∗);

• for (α, β) ∈ γ78, we have Sα = Sβ (lying in Ca
0).

emark 5. Whenever two orbits coincide, their symmetric re-
lections with respect to ρ =

1
2 coincide as well.

The eleven curves in (36) split (0, 1)2 into 8 regions Gi, i =

1, . . . , 8 (shown in Fig. 7):

G1 :=
{
(α, β) : 0 < α < ρ0

c , ρ∗(α) < β < 1 − ρ∗(α)
}

(37a)

G2 :=
{
(α, β) : 0 < α < ρ0

c , 1 − ρ∗(α) < β < 1
}
, (37b)

G3 :=
{
(α, β) : ρ0

c < α < 1 − ρ0
c , 1 − ρ1

c < β < ρ1
c

}
, (37c)

4 :=
{
(α, β) : ρ0

c < α < 1 − ρ0
c , ρ1

c < β < 1
}
, (37d)

5 :=
{
(α, β) : 1 − ρ0

c < α < 1, 1 − ρ1
c < β < ρ1

c

}
, (37e)

6 :=
{
(α, β) : 1 − ρ0

c < α < 1, ρ1
c < β < 1

}
, (37f)

7 :=
{
(α, β) : 1 − ρ∗(β) < α < ρ∗(β), 0 < β < 1 − ρ1

c

}
,

(37g)

8 :=
{
(α, β) : ρ∗(β) < α < 1, 0 < β < 1 − ρ1

c

}
. (37h)

In short terms, moving from one region to the other in the
α, β)-parameter space leads to a corresponding change in the
tructure of the singular solutions.
We will show (in Proposition 1) that within each of these

egions the structure of the singular solutions is the same. Note
hat our construction of singular solutions works also on all the
oundary curves defined in (36) except for γ17, γ13 ∪ γ24, and
37∪γ58, where singular solutions are not unique (see Remark 9).
To this aim, we introduce the following eight types of singular

olutions (see Figs. 8–9):

ype 1. Singular solutions which start on Cr
0 at ξ = 0, follow the

reduced flow on Cr
0 (where ρ increases), and have a layer

at ξ = 1 in which ρ increases.
ype 2. Singular solutions which start on Cr

0 at ξ = 0, follow the
reduced flow on Cr

0 (where ρ increases), and have a layer
at ξ = 1 in which ρ decreases.

ype 3. Singular solutions which have a layer at ξ = 0 in which
ρ increases, follow the reduced flow on C0 (where ρ de-
creases) passing through the point p∗, and have another
layer at ξ = 1 in which ρ increases.
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Fig. 6. Schematic illustration of the special orbits Sc , Sα , Sβ , S̃c , S̃α , S̃β in (ξ, ρ)-space in the case 0 < α < ρ0
c and ρ1

c < β < 1. Here k(ξ ) = 1 + a cos
( 2πξ

b

)
with

a = 0.3, b = 1.5. The orbit Sc (solid cyan curve) connects (0, 1 − ρ0
c ) and (1, 1 − ρ1

c ), the orbit Sα (solid magenta curve) connects (0, α) and (1, ρ∗(α)), and the orbit
Sβ (solid brown curve) connects (0, ρ∗(β)) and (1, 1−β) with α, β < 1

2 as in (35). The dashed curves represent the orbits S̃c (cyan), S̃α (magenta), S̃β (brown), which
are symmetric to the corresponding solid ones Sc , Sα , Sβ with respect to ρ =

1
2 . We note that the orbits Sα , S̃α and Sβ , S̃β switch position in the above diagram as

α, β > 1
2 .

Fig. 7. Representation of the (α, β) bifurcation diagram for ε = 0. Here k(ξ ) = 1 + a cos
( 2πξ

b

)
with a = 0.3, b = 1.5. Red regions correspond to high density, blue

regions to low density, and green regions to transitions from high to low density regimes. In the insets, the density ρ is shown as a function of ξ . The blue parts
correspond to solutions of the reduced problem (16), whereas the green parts indicate boundary layers. The grey line represents ρ =

1
2 . To help connect the ρ

profile with that of k, the height of the central white area is taken proportional to k. Note in particular that it is minimal at ξ ∗ . In regions G1 , G2 , G7 , and G8 , ρ has
a local extremum at ξ ∗ , which is in accordance with (31).

9
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ype 4. Singular solutions which have a layer at ξ = 0 in which
ρ increases, follow the reduced flow on C0 (where ρ de-
creases) passing through the point p∗, and have another
layer at ξ = 1 in which ρ decreases.

ype 5. Singular solutions which have a layer at ξ = 0 in which
ρ decreases, follow the reduced flow on C0 (where ρ de-
creases) passing through the point p∗, and have another
layer at ξ = 1 in which ρ increases.

ype 6. Singular solutions which have a layer at ξ = 0 in which
ρ decreases, follow the reduced flow on C0 (where ρ de-
creases) passing through the point p∗, and have another
layer at ξ = 1 in which ρ decreases.

ype 7. Singular solutions which have a layer at ξ = 0 in which
ρ increases, and follow the reduced flow on Ca

0 (where ρ

decreases).
ype 8. Singular solutions which have a layer at ξ = 0 in which

ρ decreases and follow the reduced flow on Ca
0 (where ρ

decreases).

More details about the construction and structure of these
ingular orbits are given in the proof of the following proposition.

roposition 1. Let k ∈ C2([0, 1]) be a positive function satisfying
ssumption (6). Then for each (α, β) ∈ Gi, i = 1, . . . , 8 there exists
unique singular solution Γ i of type i to (5) composed of segments
f orbits of the layer problem (11) and the reduced problem (16)
atisfying the boundary conditions.

roof. The proof is based on the shooting technique outlined
bove. Technically speaking, we show that the intersection of the
ets L+

ξ∗ ∪ lξ∗ in (32a)–(33) and R−

ξ∗ ∪ rξ∗ in (32b)–(34) is non-
mpty, and in particular consists of one point. This gives us the
nique values of ρ0, ρ1 for which a singular orbit exists depend-
ng on α and β , which in turn allows us to identify the eight types
f singular solutions corresponding to the eight regions defined
n (37). While we claim the existence of singular solutions only
n the open regions Γ i, i = 1, . . . , 8 we also comment on the
ingular configurations where (α, β) lies on the curves γij from
36).

In principle there are four possible ways for the intersec-
ion between L+

ξ∗ ∪ lξ∗ and R−

ξ∗ ∪ rξ∗ to occur; one of these
efines four possible profiles corresponding to four regions in
α, β)-parameter space, two of these lead to two possible profiles
orresponding to two regions in (α, β)-parameter space, while
he fourth case (l1 ∩ r) leads to an empty intersection, since lξ∗

nd rξ∗ are separated from L+

ξ∗ and R−

ξ∗ , respectively, only for
≤ ρ0

c and β ≤ 1− ρ1
c , and in this case they can never coincide.

hus, we are left with:

ase 1: lξ∗ ∩ R−

ξ∗ ̸= ∅. From the investigation of this case we
obtain orbits of type 1, 2.

ase 2: L+

ξ∗ ∩ R−

ξ∗ ̸= ∅. From the investigation of this case we
obtain orbits of type 3, 4, 5, 6.

ase 3: L+

ξ∗ ∩ rξ∗ ̸= ∅. From the investigation of this case we
obtain orbits of type 7, 8.

n the following, we examine Cases 1–3 in more detail.
Case 1: lξ∗ ∩ R−

ξ∗ ̸= ∅. By definition of lξ∗ , this occurs only
hen α ≤ ρ0

c . In this case, we have lξ∗ ∈ R−

ξ∗ , which implies
hat p0 = l and, consequently, ρ0 = α. This implies that in
his regime, no boundary layers exist at ξ = 0. Moreover, since
(1, s) = ρ∗(α), following the flow of the layer problem until it
its R we obtain

1 =
α(1 − α)k(0)

. (38)

βk(1)

10
In this case, the singular orbit consists in a slow motion along
Cr
0 followed by a layer at ξ = 1. The nature of this layer – in

particular its orientation – depends on α and β as follows:

• When α < ρ0
c and ρ∗(α) < β < 1 − ρ∗(α), i.e. for

(α, β) ∈ G1, ρ increases along the boundary layer at ξ = 1.
The corresponding singular solution is therefore of type 1
(see Fig. 8(a)).

• When α < ρ0
c and β > 1 − ρ∗(α), i.e. for (α, β) ∈ G2, ρ

decreases along the boundary layer at ξ = 1. Therefore, the
corresponding singular solution is of type 2 (see Fig. 8(b)).

We note that when α < ρ0
c and β = 1 − ρ∗(α) (i.e. on γ12) there

s no layer at ξ = 1.
Case 2: L+

ξ∗ ∩R−

ξ∗ ̸= ∅. We observe that by definition L+

ξ∗ ⊂ Ca
0

nd R−

ξ∗ ⊂ Cr
0. Thus, this case corresponds to having α ≥ ρ0

c and
≥ 1 − ρ1

c and their non-empty intersection is realised at the
anard point p∗ (see (14)). This implies that the slow segment of
hese singular orbits is the canard orbit Sc .

In particular, since ρ+(ξ ∗, s) =
1
2 = ρ−(ξ ∗, t), it follows that

+(0, s) = 1 − ρ0
c and ρ−(1, t) = 1 − ρ1

c . Consequently, the
tart/end point of the reduced flow are fixed by the canard and
orrespond to p0c and p1c respectively, whereas boundary layers at
= 0, 1 may arise depending on α and β . It is then possible to
etermine the starting and ending points of the orbit by following
he flow of the layer problem (backwards at ξ = 0 and forward
t ξ = 1); this leads to

0 = 1 −
k(ξ ∗)
4αk(0)

, ρ1 =
k(ξ ∗)
4βk(1)

. (39)

n particular, we have:

• When ρ0
c < α < 1 − ρ0

c , ρ increases along the boundary
layer at ξ = 0. Additionally:

– If 1 − ρ1
c < β < ρ1

c , i.e. for (α, β) ∈ G3, ρ increases
along the boundary layer at ξ = 1. This implies that
the singular orbit is of type 3 (see Fig. 8(c)).

– If ρ1
c < β < 1, i.e. for (α, β) ∈ G4, ρ decreases along the

boundary layer at ξ = 1. This implies that the singular
orbit is of type 4 (see Fig. 8(d)).

• When 1−ρ0
c < α < 1, ρ decreases along the boundary layer

at ξ = 0. Additionally:

– If 1 − ρ1
c < β < ρ1

c , i.e. for (α, β) ∈ G5, ρ increases
along the boundary layer at ξ = 1. This implies that
the singular orbit is of type 5 (see Fig. 9(a)).

– If ρ1
c < β < 1, i.e. for (α, β) ∈ G6, ρ decreases along the

boundary layer at ξ = 1. This implies that the singular
orbit is of type 6 (see Fig. 9(b)).

e note that when α = 1− ρ0
c and β ≥ 1− ρ1

c (i.e. on γ35 ∪ γ46)
e have no boundary layer at ξ = 0. Moreover, when β = ρ1

c and
≥ ρ0

c (i.e. on γ34 ∪ γ56) we have no boundary layer at ξ = 1.
Case 3: L+

ξ∗∩rξ∗ ̸= ∅. By definition of rξ∗ , this occurs only when
< 1 − ρ1

c . In this case, we have rξ∗ ∈ L+

ξ∗ , which implies that
1 = r and, consequently, ρ1 = 1 − β (i.e., no boundary layers
merge at ξ = 1). Moreover, since ρ(0, s) = ρ∗(β), following the
ayer problem backwards until it hits L, we obtain

0 = 1 −
β(1 − β)k(1)

αk(0)
. (40)

Consequently, the slow motion is here entirely contained in Ca
0

and there is a boundary layer at ξ = 0, whose nature depends on
α as follows:

• If 1 − ρ∗(β) < α < ρ∗(β) and 0 < β < 1 − ρ1
c , i.e. if

(α, β) ∈ G7, ρ is increasing and the singular solution is of
type 7 (see Fig. 9(c)).
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Fig. 8. Schematic representation of singular solutions of type 1–4 (rows 1–4, respectively). First column: Boundary conditions at ξ = 0 in (j, ρ)-space: the orange line
s L, while the orange curve is L+ . The red dot represents p0 and the green line illustrates the layer where ρ increases (type 3, 4). Second column: Slow evolution
n C0 (blue curve). The orange lines are the projection of L and L+ on C0 , while the purple one represents the projection of R− on C0 . The orange dot corresponds
o l, while the purple dot corresponds to r . For orbits of type 3 and 4 the slow flow involves the passage through the canard point p∗ . Third column: Boundary
onditions at ξ = 1 in (j, ρ)-space. The red dot corresponds to p1 , while the purple line and curve represent the manifolds R and R− , respectively. The green line
orresponds to the layer of the singular orbit where ρ increases (type 1–3)/decreases (type 2–4). Fourth column: Singular solution in (ξ, ρ)-space.
R
s
t

• If ρ∗(β) < α < 1 and 0 < β < 1 − ρ1
c , i.e. if (α, β) ∈ G8, ρ

is decreasing, and we have a singular solution of type 8 (see
Fig. 9(d)).

We note that when α = ρ∗(β) and β < 1− ρ1
c (i.e. on γ78), there

are no boundary layers. □

Remark 6. The construction in Case 3 is essentially the same as
the one in Case 1 upon reversal of the flow direction in (8).

Remark 7. Singular solutions of type 1, 2, 7, and 8 can be
obtained also applying the same strategy used in [1, Proposition
 i

11
2], as their slow portion is entirely contained in one of the two
halves of the critical manifold (Cr

0 in the case of type 1, 2, Cr
0 in the

case of type 7, 8). Therefore, it would be possible to only focus on
the flow of the manifold L of left boundary conditions up to ξ = 1
and check its intersection with the projection of the manifold R
of right boundary conditions on C0.

emark 8. Different values of k(0), k(1), and k(ξ ∗) influence the
tructure of the bifurcation diagram sketched in Fig. 7 only quan-
itatively. In particular, the smaller k(ξ ∗) is, the larger regions Gi,
= 3, 4, 5, 6 are, consequently reducing the sizes of regions G ,
i
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Fig. 9. Schematic representation of singular solutions of type 5–8 (rows 1–4, respectively). First column: Boundary conditions at ξ = 0 in (j, ρ)-space: the orange
ine is L, while the orange curve is L+ . The red dot represents p0 and the green line illustrates the layer where ρ increases (type 7)/decreases (type 5, 6, 8). Second
olumn: Slow evolution on C0 (blue curve). The orange lines are the projection of L and L+ on C0 , while the purple one represents the projection of R− on C0 . The
range dot corresponds to l, while the purple dot corresponds to r . For orbits of type 5 and 6 the slow flow involves the passage through the canard point p∗ . Third
olumn: Boundary conditions at ξ = 1 in (j, ρ)-space. The red dot corresponds to p1 , while the purple line and curve represent the manifolds R and R− , respectively.
he green line corresponds to the layer of the singular orbit where ρ increases (type 5)/decreases (type 6). Fourth column: Singular solution in (ξ, ρ)-space.
o
l
s
I
a
s
o

(

= 1, 2, 7, 8. Recall that smaller values of k(ξ ∗) correspond to a
arrower bottleneck.

emark 9 (Degenerate Cases Including Continua of Singular Solu-
ions). When α ≤ ρ0

c and β = ρ∗(α) – i.e. when (α, β) ∈ γ17

we have that both L+

ξ∗ ∩ rξ∗ and lξ∗ ∩ R−

ξ∗ are non-empty.
onsequently, there are two possible reduced solutions, satisfying
see Fig. 10(a))

a)
{
ρ(0, s) = α,

or (b)
{
ρ(0, s) = 1 − α,

(41)

ρ(1, s) = β, ρ(1, s) = ρ1 = 1 − β.

12
In this case, we have a continuum of singular solutions, since at
any ξ ∈ [0, 1] it is possible to jump from the slow trajectory
f the reduced flow in (a) to the one in (b) via the flow of the
ayer problem. Analogously, we obtain a continuum of singular
olutions when α = ρ0

c , β ≥ 1 − ρ1
c , i.e. when (α, β) ∈ γ13 ∪ γ24.

n this case, in fact, we have that both L+

ξ∗ ∩ R−

ξ∗ and lξ∗ ∩ R−

ξ∗

re non-empty, and therefore there are two possible reduced
olutions (with jumps possible at any ξ ∈ [0, ξ ∗

] via the flow
f the layer problem) satisfying (see Fig. 10(b))

c)
{
ρ(0, s) = ρc,

1 or (d)
{
ρ(0, s) = 1 − ρc,

1 (42)

ρ(1, s) = 1 − ρc , ρ(1, s) = 1 − ρc .
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Fig. 10. Schematic representation in (ξ, ρ)-space of the slow portions (blue curves) of the possible singular orbits for (a) (α, β) ∈ γ17 , (b) (α, β) ∈ γ13 ∪ γ24 , and (c)
α, β) ∈ γ37 ∪ γ58 . The orange and purple curves correspond to the projection of L+ and R− , respectively, on the (ξ, ρ)-space. Fast jumps from the slow solution in
Cr
0 to the slow solution in Ca

0 are possible (a) at each ξ ∈ [0, 1], (b) for ξ ∈ [0, ξ ∗
], and (c) for ξ ∈ [ξ ∗, 1].
last example of such a situation is given by α ≥ ρ0
c , β = 1−ρ1

c ,
.e. when (α, β) ∈ γ37 ∪ γ58. Here, both L+

ξ∗ ∩ R−

ξ∗ and L+

ξ∗ ∩ rξ∗

re non-empty, leading again to two possible reduced solutions
with jumps possible at any ξ ∈ [ξ ∗, 1] via the flow of the layer
roblem) satisfying (see Fig. 10(c))

c)

{
ρ(0, s) = 1 −

k(ξ∗)
4αk(0) ,

ρ(1, s) = ρ1
c ,

or (d)

{
ρ(0, s) = 1 −

k(ξ∗)
4αk(0) ,

ρ(1, s) = 1 − ρ1
c .

(43)

ince in these degenerate cases singular solutions are not unique,
ur method based on transversality arguments to infer persis-
ence of singular solutions to (5a)–(5b) for 0 < ε ≪ 1 does
ot apply. Moreover, at the point α = ρ0

c , β = 1 − ρ1
c – i.e. at

the intersection of γ17, γ13, and γ37 – the situation is even more
degenerate as the three previous scenarios collide. We leave the
analysis of these more delicate situations for future work.

We now prove that the singular solutions from Proposition 1
perturb to solutions of (5a)–(5b) for ε sufficiently small.

heorem 1. Let k ∈ C2([0, 1]) be a positive function satisfying
he assumption in (6). For each (α, β) ∈ Gi, i = 1, . . . , 8, the
oundary value problem (5) has a unique solution ρ(x, α, β, ε) for ε

sufficiently small. In the phase-space formulation (10), this solution
corresponds to an orbit Γ i

ε which is O(εµ)-close to Γ i in terms of
ausdorff distance, with µ = 1 for i = 1, 2, 7, 8 and µ = 1/2 for

i = 3, 4, 5, 6.

Proof. The solutions for ε small are obtained by perturbing from
the singular solutions Γ i, i = 1, . . . , 8. More precisely, for i =

, 2, 7, 8 we show that the manifold obtained by flowing the line
of points corresponding to the boundary conditions at ξ = 0

for ε small intersects the line R of points corresponding to the
boundary conditions at ξ = 1 in a point which is close to the
corresponding point of the singular solution. For i = 3, 4, 5, 6, on
the other hand, we show that the manifold obtained by flowing
the line L of points corresponding to the boundary conditions at
ξ = 0 to ξ = ξ ∗ for ε small intersects the manifold obtained
by flowing backwards the line R of points corresponding to the
boundary conditions at ξ = 1 to ξ = ξ ∗ in a point which is close
to the corresponding point of the singular solution. Analogously
to Proposition 1, this is done by considering three cases.

Case 1: (α, β) ∈ Gi, i = 1, 2. In this case, the proof is completely
analogous to Case 1 in [1, Theorem 2]. In particular, it is possible
to show that for 0 < ε ≪ 1 the (forward) flow defined by (8)
takes a suitable small segment of L to a smooth, two-dimensional
manifold M , which reduces to a curve L when projected in
0,ε 1,ε

13
the plane ξ = 1. Such a curve intersects R in a point p1,ε which
corresponds to the right end-point of the solution of the boundary
value problem. The full solution for ξ ∈ [0, 1] is then obtained by
following the flow backward from p1,ε to ξ = 0. In this case, the
perturbed orbits areO(ε) close to the corresponding singular ones
as the perturbations are C1 and O(ε) due to regular perturbation
theory near the boundary layers and Fenichel theory near reduced
flow segments.

Case 2: (α, β) ∈ Gi, i = 3, 4, 5, 6. In this case, the singular
solution starts with a layer connecting the point p0 ∈ L to the
point p0c on Sc , then follows the canard through the canard point
p∗ up to ξ = 1, and finally ends with another layer connecting p1c
with the point p1 ∈ R.

To prove the persistence of this singular orbit, we flow the
line L of boundary conditions at ξ = 0 forward, the line R of
boundary conditions at ξ = 1 backward, and show that they
intersect transversally at ξ = ξ ∗ for ε small. Since the singular
solution involves the point p∗ on the non-hyperbolic fold line F
and the emergence of a canard, results on extending GSPT to such
problems [24] are needed here.

Fenichel theory [14] implies that away from the fold line F
(compact subsets of) Ca

0 and Cr
0 perturb smoothly to the slow

manifolds Ca
ε and Cr

ε , respectively. The results in [24, Theorem
4.1] imply that in a neighbourhood of the canard point p∗ the
manifolds Ca

ε and Cr
ε intersect transversally in a maximal canard

Sε
c (close to Sc) for ε sufficiently small. As in case 1, consider a
small segment of L containing p0 and denote its extension by the
forward flow of (10) by M0,ε for ε small. Analogously, consider
a small segment of R containing p1 and denote its extension by
the backward flow of (10) by M1,ε for ε small (again a smooth,
two-dimensional manifold). By Fenichel theory, the manifolds
M0,ε and M1,ε are exponentially close to Ca

ε and Cr
ε , away from

boundary layer regions close to L and R, respectively. Therefore,
M0,ε and M1,ε also intersect transversally in a unique orbit,
which is the unique solution to the boundary value problem (see
Fig. 11). Here, the O(ε1/2) distance between the perturbed and
the corresponding singular solutions follows from the blow-up
analysis in [24], since the effect of the perturbation in the scaling
chart of the blow-up transformation is of the order ε1/2.

Case 3: (α, β) ∈ Gi, i = 7, 8. This case can be proved follow-
ing the same approach as in [1, Theorem 2], and in particular
is completely analogous to Case 1 upon reversal of the flow
direction. □

3. Numerical experiments

In this section, we present some numerical results for the

steady-state problem (5) which support the analysis of Section 2.
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Fig. 11. Schematic representation of a solution (continuous red curve) to the full
roblem (5a)–(5b) obtained for (α, β) ∈ G4 with the strategy discussed in Case
of Theorem 1. The orange and purple manifolds represent M0,ε in [0, ξ ∗

+ η]

nd M1,ε in [ξ ∗
− η, 1] with η = 1/18, respectively, whereas the red dots at

= 0 and ξ = 1 correspond to the initial and final point of the orbit. These
anifolds intersect transversally at ξ = ξ ∗ , providing the uniqueness of the
btained solution. The passage close to the canard point p∗ leads to the O(ε1/2)
istance from the corresponding singular orbit.

ore details about the numerical method employed here can be
ound in [1]. All results are obtained for ε = 10−3.

We first set k(ξ ) = 1 + a cos
( 2πξ

b

)
, a choice that was already

considered in Fig. 7 in the singular case. For ε ̸= 0, Fig. 12
illustrates some typical profiles, one per region defined by the
GSPT analysis. The values chosen for α and β are the same as
in Fig. 7, the solutions are qualitatively very close.

Next, investigate more realistic choices for k, which should
mimic a corridor with a bottleneck. We consider two regions of
constant width that are connected by a narrower section in the
middle. In particular, we consider a ‘‘supergaussian’’ profile for k:

k(ξ ) = we − (we − wm)e
−

⏐⏐⏐ ξ−ξ∗

d

⏐⏐⏐6
,

here we, wm, d and ξ ∗ are positive parameters, corresponding to
he width of the wider regions at the left and right, the width of
he narrow middle section, the neck length and the neck position,
espectively. We pick we = 1 and consider both wm = 0.9,
orresponding to wider neck and wm = 0.5 which gives a more
ronounced neck. The other parameters are taken as we = 1,
= 0.2, ξ ∗

= 0.6, which gives a satisfactory, asymmetric width
rofile as shown in Fig. 13.
Some characteristic profiles are shown in Fig. 14, along with

he 8 regions defined by the GSPT analysis above. The selected
alues of the parameter pair α and β are picked with exactly
ne pair value per region, and the same for both wm = 0.9 and
m = 0.5. The parameters α and β are also chosen away from
he 0 and 1, since those values lead to almost constant solutions
or regions G1, G2, G7, and G8, which correspond to the blue and
ed shaded areas. All chosen values are stated in Table 1.

Generally speaking, we have three parameters ranges of in-
erest, within which the stationary solutions share the same
ualitative behaviour:

• Small α (which corresponds to low inflow as in the blue
regions G and G ), which leads to low density stationary
1 2

14
Table 1
Parameters for Fig. 14.

G1 G2 G3 G4 G5 G6 G7 G8

α 0.119 0.128 0.5 0.5 0.881 0.881 0.5 0.941
β 0.5 0.941 0.5 0.881 0.5 0.881 0.119 0.128

states with ρ < 1
2 and a boundary layer on the right

boundary.
• Small β (which corresponds to low outflow as in the red

regions G7, and G8), which leads to high density station-
ary states with ρ > 1

2 and a boundary layer on the left
boundary.

• Large values of α and β (corresponding to high inflow and
outflow regimes as in the green regions G3 to G6), leading to
density profiles going from high density on the left (before
the bottleneck) to low density on the right (after). In this
case, boundary layers are present on both boundaries.

Inside these three areas, solutions seem to depend only weakly
n α and β , which affect the height of the boundary layers only.
t is only across the boundary between these areas (white lines)
hat pronounced qualitative changes occur.

mpact of the width of the bottleneck. We now turn our attention
to the influence of wm on the solutions. The first obvious differ-
ence in Fig. 14 is the larger square in the centre for small wm,
hich corresponds to the region G3 in the singular analysis. This

s explained by the very simple dependency of both ρ0
c and ρ1

c
(which bound G3) on k, see (35).

In the regions of low (resp. high) density, in blue (resp. red)
in Fig. 14, the density ρ is roughly constant on large parts of
the domain, with variations at the boundaries as well as at the
front and back of the narrow section. Outside of it, ρ takes similar
values for both wm = 0.9 and wm = 0.5. Inside, however, ρ
takes values much closer to 1/2 for wm = 0.5. Indeed, where ρ is
almost constant, the flux can be approximated as J = kρ(1 − ρ);
since J is independent of x, lower values of k correspond to ρ
closer to 1/2. This also seems to indicate that in both the low
and high density phases, the flux J for given (α, β) only depends
weakly on wm.

This numerical observation confirms the analytical results of
Proposition 1 for the singular case (ε = 0). We have in fact
that in the regions of low (resp. high) density, studied in Case 1,
corresponding to regions G1 and G2 (resp. 3, corresponding to G7,
and G8), the density at the entrance (resp. exit) is given by α (resp.
β) and hence is not affected by the features of the bottleneck. It
follows that J = α(1 − α) (resp. J = β(1 − β)).

In the green region (which could be argued to correspond to
the so-called maximum flux phase for constant k), the situation
is different. Although the profiles are qualitatively similar with a
transition between a high density to a low density plateau, the
densities for wm = 0.5 (wider bottleneck, top) are much closer to
1/2 for the values of α and β which are considered. This relates
to a higher flux for the wider bottleneck.

The computational results in these regions correspond to the
analysis of Case 2 (regions G3 to G6), a situation in which the
density changes significantly (i.e. a boundary layer) in proximity
of both the entrance and the exit, immediately preceded by a
region where it is approximately constant. The density value in
these areas is defined by 1−ρ0

c and 1−ρ1
c , respectively. With the

choice of parameters in Table 1, the approximation k ≃ 1 holds, at
least in the first and last 10% of the domain; we then get from its
definition that ρ0

c (resp. ρ1
c ) is increasing (resp. decreasing) w.r.t

wm. In fact, we have

1 − ρ0
≃ ρ1

≃
1 (

1 +

√
1 − wm

)
and J ≃

1
wm,
c c 2 4
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Fig. 12. (α, β) phase diagram for k(ξ ) = 1+ a cos
( 2πξ
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)
with a = 0.3, b = 1.5. The insets show the non-singular stationary density ρ as a function of ξ for ε = 10−3 .

o help connect the ρ profile with that of k, the height of the central white area is taken proportional to k. Note in particular that it is minimal at ξ ∗ . In regions
1 , G2 , G7 , and G8 , ρ has a local extremum close to ξ ∗ .
Fig. 13. Representation of the 2D domain associated with a supergaussian k. The thick and bold lines correspond to wm = 0.5 and wm = 0.9, respectively.
R
c
o
e
d

J

o that J grows linearly with the width of the neck and eventually
eaches 1/4 for wm = 1, the maximum value for a straight
hannel. This is in agreement with the numerical observations
escribed above.
To summarise, the influence of the width of the neck in this

ase is two-fold. First, in terms of (α, β), the green region grows
arger and eventually completely fills the parameter space as the
eck-width goes to zero. Second, it is in this region that wm has
noticeable effect on the flux J, which depends linearly on wm,
s one would expect intuitively.
15
emark 10. The observations above are independent of the
hoice of k, provided that k(0) = k(1) = 1 and that the minimum
f k is nondegenerate. In the singular case, one obtains an explicit
xpression for J, which we write as Jk(α, β) to emphasise the
ependency on k, α and β:

k(α, β) =

⎧⎨⎩
α(1 − α) α ≤ ρ0

c ∧ α ≤ β ,

β(1 − β) β ≤ 1 − ρ1
c ∧ β ≤ α ,

1

4 minξ k(ξ ) otherwise .
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Fig. 14. Singular phase diagrams in the (α, β) parameter space from the GSPT analysis for the supergaussian k along with some typical non-singular solutions for
wm = 0.9 (top) and wm = 0.5 (bottom), for ε = 10−3 . To help connect the ρ profile with that of k, the height of the central white area is taken proportional to k.
Note in particular that it is minimal at ξ ∗ . In regions G1 , G2 , G7 , and G8 , ρ has a local extremum close to ξ ∗ .

16
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Fig. 15. Illustration of the flow J1 (solid colours on the left, wireframe on the right) and Jk (solid colours on the right) as a function of α and β . Recall that ρ0,1
c →

1
2

s k(ξ ∗) → 1, so that from the green rectangles, only the darker one (top right) remains in the limit.
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n particular, we have that Jk(α, β) = min
{
J1(α, β),minξ k(ξ )

}
.

his is illustrated in Fig. 15. This means that as minξ k(ξ ) de-
reases, the flow Jk(α, β) will saturate, i.e. reach its maximum,
aster as α and β increase. The maximum of Jk will also decrease
inearly with minξ k(ξ ). Numerical experiments with two nar-
ow sections of varying width suggest that this applies also for
unctions k with several (nondegenerate) critical points.

. Conclusion

In this work, we investigate the steady-states of a 1D area
veraged model describing pedestrian dynamics for unidirec-
ional flows in domains that have a bottleneck. In the proposed
odel, information about the geometry enters as a nonhomoge-
eous factor acting both on the diffusive and convective terms.
e investigate the case in which this factor admits an isolated
inimum, which corresponds to the bottleneck. The stationary
rofiles exhibit a multi-scale nature, which we analyse using
SPT. Methods from GSPT are commonly used to construct so-
utions to boundary value problems on infinite domains, often in
he setting of travelling wave solutions. Dynamically, such solu-
ions correspond to heteroclinic or homoclinic orbits connecting
quilibria which correspond to the boundary values at infinity.
oundary value problems on finite domains have received less
ttention in the framework of GSPT, but see e.g. [17–19]. Our
nvestigation allows us to thoroughly understand the influence of
nflow and outflow rates (α and β , respectively) on the structure
f the solutions and, in particular, on the formation of boundary
ayers. The main novelty of our analysis is the observation that the
oint of minimal width of the bottleneck corresponds to a canard
oint, where an unexpected extended passage along the repelling
ranch of the critical manifold occurs. Thus, the geometry of
he bottleneck induces the emergence of canard solutions corre-
ponding to transitions from high to low density near the point of
inimal width of the bottleneck, which were not present in the
hannel scenario analysed previously [1]. This causes changes in
he associated bifurcation diagram which have not been observed
nd investigated before. We show that profiles of this type exist
n a significant region in the (α, β)-parameter space, whose size
ncreases as the bottleneck becomes narrower. The implications
f this result and the potential existence of qualitatively similar
ehaviour in more realistic models of pedestrian flows is an
nteresting question for further research.

In order to test the ability of our 1D reduction to capture the
ssential dynamics of the original two-dimensional model, we
lan to suitably calibrate and validate our model as a next step.
s observed in [1], the quality of the proposed 1D area averaged
pproximation depends on the parameter regime considered;
e will therefore investigate further averaging assumptions to
vercome these issues in the next steps of our research.
17
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