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In this paper, we investigate the stationary profiles of a convection-diffusion model 
for unidirectional pedestrian flows in domains with a single entrance and exit. The 
inflow and outflow conditions at both the entrance and exit as well as the shape 
of the domain have a strong influence on the structure of stationary profiles, in 
particular on the formation of boundary layers. We are able to relate the location 
and shape of these layers to the inflow and outflow conditions as well as the shape of 
the domain using geometric singular perturbation theory. Furthermore, we confirm 
and exemplify our analytical results by means of computational experiments.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we consider a continuum model for unidirectional pedestrian flows in domains where 
individuals enter and exit through a single exit and entrance; for example in corridors. The geometry of the 
domain as well as the inflow and outflow rates may lead to the formation of different boundary layers at the 
exit, entrance or bottlenecks. These boundary layers relate to congestion and have been observed in real 
life situations as well as experiments, see for example [27]. We analyse the respective stationary pedestrian 
profiles using Geometric Singular Perturbation Theory (GSPT) to understand the influence of the geometry 
and the in- and outflow rate on the formation and location of layers.
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Pedestrian simulations are nowadays standard practice to ensure the safety of public buildings and events. 
The respective software packages are based on a tremendous amount of research in model development and 
simulation tools in the last decades. Mathematical models for crowds can be divided into microscopic and 
macroscopic approaches. In the microscopic framework, people are treated as individual entities. The two 
most popular approaches are force-based and cellular automata models. In the former, the dynamics of each 
individual is described by a nonlinear ordinary differential equation (ODE) leading to a high-dimensional 
system of coupled ODEs. The social force model is one of the most prominent in this context [14]. In cellular 
automata, people move on a discrete lattice with interaction dependent transition rates. Microscopic models 
form the basis of most pedestrian simulation software in the engineering and transportation research commu-
nity, see for example [2,3]. In contrast to microscopic models, macroscopic models describe the entire crowd 
as an entity. The dynamics of the crowd is governed by nonlinear conservation laws, in which the average 
velocity of the crowd usually depends on a desired direction (for example to reach an exit or target), inter-
actions with others, and stochastic fluctuations. In general, macroscopic models are mathematically more 
amendable and allow to analyse how certain factors, such as the inflow and outflow rates or the geometry, 
influence the stationary profiles. Stationary profiles are of particular interest in the context of pedestrian 
dynamics, as they allow to identify regions of high densities and give insights into rooms capacities. In many 
experiments, recordings are only started when a steady state has been reached, as for example in the ex-
periments conducted at the Forschungszentrum in Jülich [1]. This allows experimentalists to determine the 
influence of certain factors, such as the width of an exit or entrance, on the average flow rate or pedestrian 
velocity, more precisely. For an overview on the mathematical modelling of pedestrian crowds we refer to 
[6]. More recently, the connection between microscopic data and the respective mean-field models has been 
investigated more thoroughly. For example, Gomes et al. [10] used the Bayesian framework to identify the 
maximum velocity in the same model that we are investigating here, using individual trajectories.

The model considered in this paper is a parabolic convection-diffusion equation, which was proposed 
by Burger and Pietschmann in [4]. The authors start with a cellular automata model describing a large 
pedestrian crowd, which enters a domain at a given rate through an entrance and exits at a possibly 
different rate through the exit, and then formally derive the respective mean-field model. The model is 
based on the assumption that pedestrians move in the desired direction; in this case towards the door, and 
decrease their velocity in congested regions. It does not include more complex interactions with others, and 
is therefore suitable for settings with small and medium pedestrian density and few social contacts, as for 
example in commutes to work.

The derived equation corresponds to a 2D viscous Burgers’ type equation with nonlinear inflow and 
outflow boundary conditions. The Burgers’ equation is well known and has been thoroughly investigated, 
especially in the context of traffic flow. It can be obtained by scaling the Lighthill-Whitham-Richards 
(LWR) model, see [20,24]. Its analysis is well understood on the real line; however, there are fewer results 
in higher space dimension or for more complicated boundary conditions. Burger and Pietschmann have 
characterised the stationary profiles for straight corridors, showing the formation of boundary layers at the 
entrance and/or the exit depending on the inflow and outflow rate. We generalise their results by deriving 
and analysing a 1D reduction for axially symmetric 2D domains. Furthermore, we investigate the stationary 
profiles in the vanishing diffusion limit using GSPT, which allows us to analyse the structure of stationary 
regimes for more general domains. This gives interesting insights on how boundary conditions and structural 
features lead to the formation of high and low density regimes inside the corridor as well as at entrances 
and exits. Our results allow us to identify regions in the parameter space of the boundary conditions in 
which solutions have the same structure - that is the same type and location of boundary layers - depending 
on the inflow and outflow conditions. The shape of these regions depends on the geometry of the domain; 
transitions between them can lead to very different profiles. Our analysis allows us to identify conditions 
under which small changes to the inflow rate, the outflow rate or the geometry may lead to very different 
stationary states.
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GSPT is a dynamical systems approach to singularly perturbed ordinary differential equations started 
by the pioneering work of Fenichel [8]. The most common form of GSPT considers slow-fast systems of the 
form

.
u = f(u, v),

ε
.
v = g(u, v),

(1)

where u and v are functions of t and 0 < ε � 1. Often t has the interpretation of time but it may represent 
equally well a spatial variable. For f = O(1) and g = O(1) the variable u varies on the slow time-scale t
and the variable v on the fast time-scale τ := t

ε , which explains the name slow-fast system. Written on the 
fast time-scale the equation has the form

u′ = εf(u, v),

v′ = g(u, v).
(2)

Under suitable assumptions, solutions of System (1) for small values of ε can be constructed as perturbation 
of concatenations of solutions of the two limiting problems obtained by setting ε = 0 in systems (1)
and (2), which are referred to as the reduced problem and the layer problem, respectively. In GSPT, 
these constructions are carried out in the framework of dynamical systems theory; with the theory of 
invariant manifolds playing a particularly important role. In the specific problem analysed in this paper, 
well established results and methods from GSPT are used. Therefore, and also because of lack of space, 
we do not give a more detailed summary of GSPT, but refer to [18,19] for more background on GSPT 
and its many applications. The necessary concepts and results are explained in Section 4 as needed in the 
context of the specific problem at hand. GSPT has been used extensively to construct global solutions 
with interesting dynamics, e.g. relaxation oscillations, see e.g. [30] and heteroclinic or homoclinic orbits, see 
e.g. [18]. Applications to boundary value problems on finite intervals are less common, but see e.g. [13] for a 
basic example and [17]. In many of its applications GSPT allows a full description of bifurcation diagrams up 
to their singular limit ε = 0, where numerical tools have difficulties or fail. In the context of fluid dynamics, 
GSPT techniques have been successfully applied to characterise stationary states - see e.g. the case of a 
viscous gas flow through nozzles [15,16].

In this paper, we propose and analyse a mean-field model for unidirectional pedestrian flows using PDE 
techniques as well as GSPT. Its main contributions can be summarised as follows:

• Proposal of a 1D area averaged model for unidirectional pedestrian flows in axially symmetric domains, 
accessible to mathematical analysis.

• For a restricted set of geometries: characterisation of stationary pedestrian profiles depending on the 
inflow and outflow rate as well as the geometry. Analysis of the limiting profiles using GSPT.

• Validation and computation of stationary profiles using numerical experiments for various geometries.

This paper is organised as follows: we introduce the mathematical model and perform a reduction to one 
dimension by averaging of the cross-sectional area in Section 2. Then, we discuss existence and uniqueness 
of stationary solutions of this area averaged model in Section 3. Section 4 focuses on the vanishing viscosity 
limit of the area averaged model, which allows us to characterise the stationary profiles when the width is 
monotonic in the direction of movement. We complement our results with computational experiments in 
Section 5, and give an outlook on future research directions in Section 6.
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2. A PDE model for unidirectional flows in corridors

Our starting point is the PDE model for unidirectional pedestrian flows proposed by Burger and 
Pietschmann in [4]. This model includes the most important driving forces observed in unidirectional pedes-
trian flows, while still being amenable to analytical techniques. This allows us to investigate the influence 
of fundamental and important factors, such as the corridor geometry or the inflow and outflow rate at 
entrances and exits.

We consider a large pedestrian crowd with density ρ = ρ ((x, y), t), evolving in a bounded domain Ω ⊂ R2. 
Through parts of the boundary ∂Ω, denoted by Γ and Σ respectively, the crowd can enter and leave the 
domain. We assume that 0 ≤ ρ ≤ ρmax ∈ R and that the dynamics of the crowd is driven by transport and 
diffusion. It is assumed that the transport velocity depends only on the local density. This relationship was 
first proposed by Greenshields [11] in the context of vehicular traffic and was coined fundamental diagram
by Haight in 1963 [12]. It is now a classical working hypothesis in both traffic and crowd motion modelling. 
The precise relation depends on experimental conditions and is still an active research topic. Following 
experimental data, e.g. [28], we will assume that at low densities, individuals can walk with a maximum 
velocity vmax. However, their speed decreases as the density increases and approaches zero at a certain 
density (denoted by ρmax) due to overcrowding. The form of the fundamental diagram suggests a linear 
decrease of velocity as a function of density; hence we set

v = vmax

(
1 − ρ

ρmax

)
.

Different values for ρmax and vmax can be found in the literature, ranging from 3.8 to 10 pedestrians per 
square meter for ρmax and 0.98 m/s to 1.5 m/s for vmax, see for example [28]. We set without loss of generality 
vmax = ρmax = 1 in the following. Moreover, we assume that all individuals share the common objective of 
moving from the entrance to the exit. This is included via a normalized vector field u : Rn �→ Rn which 
defines the direction of motion, see (3c). For example, u(x) can be chosen to be the unit tangent vector to 
the geodesic from an interior point x to the exit. Let J denote the total flux. The previous considerations 
can be formalized as the following convection-diffusion system:

∂tρ + ∇ · J = 0 , (3a)

J = −ε∇ρ + ρ (1 − ρ)u , (3b)

ρ (·, 0) = ρ0 , (3c)

where ε denotes the diffusion coefficient and ρ0 is smooth. In dimension one, System (3) can also be seen 
as a singular perturbation of the hydrodynamical limit of a totally asymmetric exclusion process defined on 
Z, see e.g. [25].

System (3) is supplemented with in- and outflow conditions at the entrance and exit. Individuals are 
assumed to exit the corridor at Σ with a given rate β ∈ (0, 1). At Γ, they enter with rate α ∈ (0, 1) but are 
also subject to volume exclusion, which makes entering less likely as ρ approaches the maximum density 
ρmax = 1. This results in an effective inflow rate α (1 − ρ) and gives the following boundary conditions:

J · n = 0 on ∂Ω \ (Γ ∪ Σ) , (3d)

−J · n = α(1 − ρ) on Γ , (3e)

J · n = βρ on Σ . (3f)

Existence of stationary solutions to (3) was studied in [4], for smooth Ω ⊂ Rn, n ∈ {1, 2, 3}. Because of 
the non-standard boundary conditions, classical results from the literature cannot be applied. The authors 
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present two different existence proofs: the first one for a divergence free vector field u, while the second one 
assumes that u = ∇V , where V is a given potential. In the latter case, the equation can be interpreted as 
a Wasserstein gradient flow. Burger and Pietschmann have also characterised the stationary profiles of (3)
in one spatial dimension. If Ω = [0, L], they proved uniqueness of the solution for u ≡ 1 and showed that 
the inflow and outflow rates define three distinct regimes:

• influx-limited, where the overall density is low and higher towards the exit Σ.
• outflux-limited, where the overall density is high and lower towards the entrance Γ.
• maximal flux, where ρ is close to 1

2 with boundary layers at the entrance and exit.

These regimes are characterised precisely in [4], the first two for α, β < 1
2 , the third for α, β > 1

2 .

2.1. The area averaged 1D model

Next we propose a possible reduction of (3), which allows us to analyse the influence of the geometry as 
well as the boundary conditions on the stationary profiles. To this aim, we average the flow over the cross 
section to obtain a one dimensional approximation. A similar approach was used for example in [5] in the 
context of ions flowing through radially symmetric nanopores.

For this purpose, we restrict our attention to corridor-shaped domains Ω ∈ R2 of the form

Ω :=
{

(x, y) : x ∈ [0, L], y ∈ 1
2 [−w(x), w(x)]

}
,

Γ := {(0, y) ∈ Ω} , and Σ := {(L, y) ∈ Ω} , (Assumption 1)

where w : [0, L] �→ (0, +∞) is the width in the y direction, see Fig. 1. In the following analysis, w is 
assumed to be smooth. By definition, the considered domain Ω as well as Γ and Σ are symmetric w.r.t. the 
x-axis. From now on, we consider smooth vector fields u deriving from a potential and which are symmetric 
w.r.t. the x-axis, i.e. satisfying

∃V smooth s.t. u = ∇V ,

ux(x,−y) = ux(x, y) and uy(x,−y) = −uy(x, y) ,

u · n =
{
−1 on Γ,
1 on Σ.

(Assumption 2)

The last condition in (Assumption 2) is not crucial here, but we introduce it to simplify the derivation 
of the model, see Remark 1. In particular, the choice of u in our numerical experiments does not meet this 
last assumption.

Finally, we assume the symmetry of the initial condition:

ρ0(x, y) = ρ0(x,−y) ∀(x, y) ∈ Ω . (Assumption 3)

Under Assumptions 1, 2 and 3, the uniqueness of the weak solution (see e.g. [9]) ensures that both ρ and 
J are symmetric w.r.t. the x-axis, i.e. for all (x, y) ∈ Ω:

ρ(x,−y) = ρ(x, y) , and J(x,−y) =
(

Jx(x,−y)
Jy(x,−y)

)
=

(
Jx(x, y)
−Jy(x, y)

)
,

where, for the sake of readability, we do not write the dependency on the time variable t explicitly. By 
integrating (3a) with respect to y we get
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Fig. 1. Sketch of a typical domain Ω, the entrance boundary Γ and the exit boundary Σ. The width at a given point x is w(x) and 
the outward normal vector is n.

∂

∂t

w(x)/2∫
−w(x)/2

ρ dy +
w(x)/2∫

−w(x)/2

∇ · J dy = 0 . (4)

Using (3d) on the side walls, we have that

w(x)
2∫

−w(x)
2

∇ · J(x, y) dy =

w(x)
2∫

−w(x)
2

∂xJx(x, y) + ∂yJy(x, y) dy

= ∂

∂x

w(x)
2∫

−w(x)
2

Jx(x, y) dy − ∂xw(x)
2

(
Jx

(
x,

w(x)
2

)
+ Jx

(
x,−w(x)

2

))

+ Jy

(
x,

w(x)
2

)
− Jy

(
x,−w(x)

2

)

= ∂

∂x

w(x)
2∫

−w(x)
2

Jx(x, y) dy +
(
−∂xw(x)/2

1

)
· J

(
x,

w(x)
2

)

−
(
∂xw(x)/2

1

)
· J

(
x,

−w(x)
2

)

= ∂

∂x

w(x)
2∫

−w(x)
2

Jx(x, y) dy = ∇ ·

w(x)
2∫

−w(x)
2

J(x, y) dy .

We see that (4) has in fact divergence form, that is

∂

∂t

w(x)
2∫

−w(x)
2

ρ dy + ∇ ·

w(x)
2∫

−w(x)
2

J dy = 0 . (5)

From now on, we make the following key approximation and neglect the variation of ρ in the transversal 
direction y:

ρ(x, y) = ρ(x) . (Approximation 1)
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This can be justified in the limit of narrow corridors, see [5]. Plugging Approximation 1 into (5) we obtain:

w(x)∂tρ(x, t) + ∂x (w(x) (−ε∂xρ(x, t) + ρ(x, t) (1 − ρ(x, t)) 〈ux〉(x))) = 0 , (6)

where 〈·〉 = w−1(x) 
∫
· dy. The corresponding boundary conditions are

ε ∂xρ(x, t) = (ρ(x, t) − α)(1 − ρ(x, t)) , at x = 0 ,

ε ∂xρ(x, t) = ρ(x, t)((1 − ρ(x, t)) − β) , at x = L .
(7)

At this point 〈ux〉 can be scaled out by the change of variables x → x̃ =
∫ x

0 〈ux〉(s)ds ∈ [0, L̃], where 

L̃ =
∫ L

0 〈ux〉(s)ds. The equation for the transformed variable ρ̃(x̃) = ρ(x) reads as:

∂tρ̃ + ∂x̃ (w̃〈ũx〉 (−ε∂x̃ρ̃ + ρ̃ (1 − ρ̃))) = 0 . (8)

We define k̃ = w̃〈ũx〉, which then depends on the parameters w and u of the original problem.

Remark 1 (Boundary conditions for u). Under (Assumption 2), the boundary conditions (7) are unchanged 
by the change of variable, since 〈ux〉 = 1 for x = 0, L.

One can also consider more general choices for u, by introducing α̃ = 〈ux〉(0)−1α. Since u is smooth, we 
have α ≤ ‖u‖∞α̃. By restricting α̃ to the range (0, ‖u‖−1

∞ ), the analysis of the next section still holds. A 
similar reasoning applies to β.

After dropping the tilde notation, Equation (8) then reads

∂tρ + ∂x (k(x) (−ε∂xρ + ρ (1 − ρ))) = 0 .

Here, k can be seen as the rescaled flux of u across the cross-section in the y direction, at some location x. 
For stationary unidirectional pedestrian flows, we drop the time dependency and obtain the following 1D 
area averaged model

∂xJ = ∂x(k(x)j(x)) = 0 , (9)

where the flux j is defined by j(x) = −ε∂xρ + ρ (1 − ρ), and is subject to the boundary conditions:

j = α (1 − ρ) at x = 0 ,

j = βρ at x = L .
(10)

We will focus on this system in the rest of the paper.

3. Analysis of the 1D area averaged model

In this section, we discuss existence and uniqueness of solutions for the area averaged model (9) with 
boundary conditions (10), as well as some of their properties, such as their symmetry and the validity of a 
maximum principle. We will complement this analysis with further qualitative results about the structure 
of boundary layers using GSPT in Section 4.

We start by defining weak solutions for our problem:

Definition 1 (Weak solution). In the following, we say that ρ ∈ H1(0, L) is a weak solution of the boundary 
value problem (9)-(10) if
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L∫
0

k(x) (ε∂xρ + ρ (1 − ρ)) ∂xφ dx− αk(0)(1 − ρ(0))φ(0) + βk(L)ρ(L)φ(L) = 0 (11)

for all φ ∈ H1(0, L).

We can then state a first result:

Theorem 1 (Existence and uniqueness). Let k ∈ L∞([0, L]) be bounded away from zero and continuous at 0
and L. Then, for any 0 < α < 1, 0 < β < 1, there exists a unique weak solution ρ ∈ H1([0, L]) to Equation 
(9) satisfying the boundary conditions (10). Moreover, 0 < ρ < 1.

This can be shown by adapting the arguments presented in [4], we thus only state our results, we refer 
the reader to Appendix A for proofs.

We go on with some qualitative properties of solutions. First, the problem obtained by exchanging α and 
β as well as reversing k as a solution which is easily derived from the original problem:

Lemma 1 (Symmetry). Let ρ ∈ H1 be a weak solution of (9) with boundary conditions (10). Then, the 
function ρ̃ given by ρ̃(x) := 1 − ρ(L − x) is also a weak solution with k̃(x) = k(L − x), α̃ = β and β̃ = α.

Proof. The proof is straightforward using ∂xρ̃(x) = ∂xρ(L −x) and ρ̃(x) (1 − ρ̃(x)) = ρ(L −x) (1 − ρ(L− x))
in the distributional sense. �

If k is constant, then the maximum and minimum principles apply to (9). This is no longer true for 
general k. However, if k is monotonic as will be the case in the next section, one of the two applies:

Lemma 2 (Maximum principle). Assume that k ∈ C1. Let ρ be a C2 solution to (9) with 0 < ρ < 1. If ρ
attains a local minimum (maximum) at xm ∈ (0, L) (xM in (0, L)), then ∂xk(xm) > 0 (∂xk(xM ) < 0).

Proof. Since ∂xρ(xm) = 0, we have that

εk(xm)∂xxρ(xm) − ρ(xm)(1 − ρ(xm))∂xk(xm) = 0 ,

with ∂xxρ(xm) > 0, and therefore ∂xk(xm) > 0. The same argument holds for xM . �
As a direct consequence of Lemma 2, we have the following

Proposition 1. If k ∈ C1 with ∂xk < 0 (resp. ∂xk > 0) then any solution ρ of (9) such that ρ ∈ C2 and is 
bounded between 0 and 1 has no minimum (resp. maximum) on (0, L) and is such that ρ ≥ min (α, 1 − β)
(resp. ρ ≤ max (α, 1 − β)).

Proof. We will only describe the case ∂xk < 0. By Lemma 2, ρ has no minimum on (0, L). If the minimum 
is attained for x = 0, then (10) gives

ε∂xρ = (ρ− α) (1 − ρ) > 0 .

Similarly, if the minimum is attained for x = L we have

ε∂xρ = ρ (1 − ρ− β) < 0 ,

and since 0 ≤ ρ ≤ 1, we have that ρ ≥ min (α, 1 − β). �
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We conclude by discussing the dependence of the flux J = kj on α and β.

Lemma 3 (Monotonicity of J). Let 0 < α, β < 1. Moreover, let k be a piecewise continuous function 
satisfying assumptions of Theorem 1, and ρ be the corresponding solution of Equations (9)-(10). Then, 
k (−ε∂xρ + ρ(1 − ρ)) ≡ J ∈ R, where J is an increasing function of α and β.

Proof. We argue by contradiction and outline the argument for β only (since it is identical for α). Let 
(xi)1≤i≤n−1 denote the points where k is discontinuous. For consistency we define xn = L. The boundary 
conditions are

J = k(0)α(1 − ρ(0)) = k(L)βρ(L),

and we consider two solutions (ρ0, J0), (ρ1, J1) corresponding to (α, β0) and (α, β1) respectively, with β0 <

β1. We recall from Theorem 1 that ρ0 and ρ1 are in H1(0, L). Suppose J0 = J1, in which case ρ0(0) = ρ1(0)
and ρ0(L) > ρ1(L). Both are solution of the following initial value problem:

(Pt0,f0,G) :=
{
∂xf(t) = ε−1 (Gk−1(t) − f(t)(1 − f(t))

)
,

f(t0) = f0 ,

with t0 = 0, f0 = ρ0(0) = ρ1(0) and G = J0 = J1. By the Picard-Lindelöf theorem, ρ0(x) = ρ1(x) on 
[0, x1) and on [0, x1] by continuity. One can repeat the argument for (Pxm,ρ0(xm),J0) for 1 ≤ m ≤ n − 1, to 
eventually get ρ0(L) = ρ1(L), which is a contradiction, so that J0 �= J1.

Suppose J0 > J1, then ρ0(0) < ρ1(0) and ρ0(L) > ρ1(L). We denote x∗ := min{x : ρ0(x) = ρ1(x)}, 
which is non-empty by continuity. In particular, ρ0(x) < ρ1(x) for x < x∗ locally. The function k can be 
discontinuous at x∗, but it still admits a left limit k−(x∗), so one can consider the left limits

∂−
x ρi(x∗) = lim

x→x∗
ρi(x) .

Since J0 > J1, we have that ∂−
x ρ(x∗) < ∂−

x ρ1(x∗), which is a contradiction. �
4. Stationary profiles for monotonic width corridors

In this section, we investigate the stationary profiles of Equation (9)-(10) for a closing channel, i.e. 
k(x) > 0, dk(x)

dx < 0. Hence the function

g(x) := 1
k(x)

dk(x)
dx

, (12)

which plays an important role in the following analysis, satisfies g(x) < 0. Note that due to symmetry (using 
Lemma 1) all results of this section generalise to g > 0. We will, however, only consider the closing case, as it 
is of greater interest. Throughout this section we assume w.l.o.g. that L = 1. In the following, we construct 
stationary profiles to Equations (9)-(10) using GSPT. We identify 6 regions in the (α, β) parameter space, 
in which the stationary profiles have the same structure (with respect to boundary layers). Interestingly, it 
turns out that the location of the boundary between these regions depends only on the values of k at the 
boundary of the spatial domain.

We write Equation (9) as the first order system

dj

dx
= −g(x)j,

ε
dρ = ρ(1 − ρ) − j,

dx
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with g(x) defined in Equation (12). We rewrite this system as an autonomous system by introducing ξ = x

as a new dynamic variable and adding the trivial equation

dξ

dx
= 1.

In the following, we use the notation . = d
dx . This brings the system into the following system of first order 

ODEs
.
j = −g(ξ)j,
.
ξ = 1,

ε
.
ρ = ρ(1 − ρ) − j,

(13)

which is the starting point of the analysis in this section. In this framework, the boundary conditions (10)
become

j = α (1 − ρ) at ξ = 0,

j = βρ at ξ = 1.
(14)

System (13) is a slow-fast system in slow form (1), where ρ is the only fast variable (since its dynamics 
evolve proportionally to 1

ε � 1), while j and ξ are the slow ones [8,18,19]. As usual in GSPT, we rescale x
to the fast variable χ = x

ε , and using the notation ′ = d
dχ , we can rewrite System (13) as

j′ = −εg(ξ)j,

ξ′ = ε,

ρ′ = ρ(1 − ρ) − j,

(15)

which describes the evolution of (13) on the fast scale. Note that for ε > 0, Systems (13) and (15) are 
equivalent. Using GSPT methods to investigate fast-slow systems is particularly advantageous, as it allows 
us to obtain detailed information about the structure of the solutions to the original problem (9)-(10)
by separately analysing the singular limit ε → 0 on the slow scale (13) and on the fast scale (15), and 
then subsequently matching the results. Letting ε → 0 in Equations (13) and (15) leads to two limiting 
subproblems – i.e. the reduced problem and the layer problem, respectively – which are simpler to analyse. 
The layer problem (ε = 0 in (15)) is given by

j′ = 0,

ξ′ = 0,

ρ′ = ρ(1 − ρ) − j,

(16)

and describes the dynamics of the fast variable ρ for fixed j and ξ values. The manifold of its equilibria is 
known as the critical manifold

C0 := {(j, ξ, ρ) : j = ρ(1 − ρ)} . (17)

It consists of the union of two submanifolds Ca
0 (ρ > 1

2 ) and Cr
0 (ρ < 1

2 ) – which are attracting and repelling, 
respectively – and a line of fold points

S :=
{

(j, ξ, ρ) : j = 1
, ρ = 1

}
, (18)
4 2
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Fig. 2. Fast dynamics in (j, ρ)-space for each fixed value of ξ. The blue curve represents C0, divided in two branches Ca
0 (attracting) 

and Ca
0 (repelling). The green lines indicate orbits of the layer problem (16), while the blue dot represents the line of fold points 

S (18). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

as shown in Fig. 2.
The reduced problem reads

.
j = −g(ξ)j, (19a)
.
ξ = 1. (19b)

This system describes the dynamics of the slow variables j and ξ along C0. Equation (17) implies that .
j = (1 − 2ρ) .

ρ, hence it is advantageous to rewrite (19) in terms of the variables ξ and ρ (see Fig. 3)

.
ρ = −g(ξ)ρ(1 − ρ)

1 − 2ρ ,

.
ξ = 1.

(20)

System (20) is singular on the fold line S, i.e. for ρ = 1
2 . In order to desingularise this system, we multiply 

the right hand-sides by 1 − 2ρ, which is positive for ρ < 1
2 . For ρ > 1

2 we have to reverse the evolution 
direction. This gives the following system, which has the same orbits as (20) away from S:

.
ρ = −g(ξ)ρ(1 − ρ),
.
ξ = 1 − 2ρ,

if ρ <
1
2 ,

.
ρ = g(ξ)ρ(1 − ρ),
.
ξ = 2ρ− 1,

if ρ >
1
2 . (21)

We observe that the reduced flow (20) satisfies dρdξ < 0 for ρ > 1
2 and dρdξ > 0 for ρ < 1

2 , i.e. ρ is decreasing 
on Ca

0 and increasing on Cr
0 . Note that (21) is symmetric with respect to reflection on the fold line ρ = 1

2 .
We start by constructing six singular orbits, denoted by Γi, i = 1, . . . , 6, in the following. These singular 

orbits are suitable combinations of orbit segments of the layer problem (16) and orbits of the reduced flow 
(19) which satisfy the boundary conditions (10). Their construction is based on a shooting strategy: we 
evolve the manifold of boundary conditions at ξ = 0 forward and check whether it intersects the manifold 
of boundary conditions at ξ = 1. This constructive procedure allows us to also identify the initial and final 
values of ρ (which we call ρ0 and ρ1 in the following) for ε = 0. These singular orbits will later be used in 
the construction of genuine solutions to (9)-(10) for 0 < ε � 1 (see Theorem 2). For a visualisation of this 
strategy in a specific case, we refer to Fig. 8 - the details necessary to fully understand it will be given in 
the following.
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Fig. 3. Schematic representation of the reduced flow (20) on C0 (blue lines) for k(x) = 1 − x
2 . The dashed line indicates the line of 

fold points S. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

In the dynamical systems framework, boundary conditions (10) correspond to two lines in the (j, ξ, ρ)-
space, satisfying j = α(1 − ρ) at ξ = 0 and j = βρ at ξ = 1, respectively. However, due to the fast-slow 
structure, the set of admissible boundary conditions is restricted to (see Figs. 4–5)

L := {(α(1 − s), 0, s) : ρα ≤ s ≤ 1} , (22a)

R := {(βt, 1, t) : 0 ≤ t ≤ ρβ} . (22b)

Here

ρα =
{
α if α ≤ 1

2 ,

1 − 1
4α if α ≥ 1

2 ,
(23)

and

ρβ =
{

1 − β if β ≤ 1
2 ,

1
4β if β ≥ 1

2 .
(24)

The lower and upper bounds ρα and ρβ for the density ρ are caused by the fast-slow structure of the flow: if 
we would consider a starting point (α(1 −ρ), 0, ρ) with 0 ≤ ρ < ρα, the orbit would be immediately repelled 
to infinity from C0, hence connecting to the boundary conditions at ξ = 1 is impossible. Analogously, points 
satisfying (βρ, 1, ρ) with ρβ < ρ ≤ 1 cannot be endpoints of the singular orbits, since they are repelling for 
the layer problem.

Thus, the initial and final points of the singular orbits – p0 and p1, respectively – must satisfy

p0 ∈ L, and p1 ∈ R. (25)

The manifold L intersects with C0 at (0, 0, 1) and

l = (α(1 − α), 0, α), (26)

while R intersects with C0 at (0, 1, 0) and

r = (β(1 − β), 1, 1 − β). (27)
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Fig. 4. Schematic representation of L (orange line) and L+ (orange curve) for (a) 0 < α < 1
2 and (b) 1

2 < α < 1. The orange dot 
corresponds to l, the blue curve represents C0, and the green lines correspond to the orbits of the layer problem. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Schematic representation of R (purple line) and R− (purple curve) for (a) 0 < β < 1
2 and (b) 1

2 < β < 1. The purple dot 
corresponds to r, the blue curve represents C0, and the green lines correspond to the orbits of the layer problem. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

For ε = 0, the variable ξ evolves only on C0 according to the reduced flow (20). Therefore, in order for the 
singular solution to evolve from ξ = 0 to ξ = 1, we must connect L and R to C0. The points l and r already 
belong to C0. Other points on L and R can reach C0 using the layer problem (16). Tracking the evolution of 
L by means of the layer problem at ξ = 0 until it reaches C0, and analogously the evolution of R backwards 
until the layer problem at ξ = 1 intersects C0, yields two sets (shown in Figs. 4–5):

L+ := {(α(1 − s), 0, ρ(0, s)) : ρα ≤ s ≤ 1} , (28a)

R− :=
{(

βt, 1, 1
2

(
1 −

√
1 − 4βt

))
: 0 ≤ t ≤ ρβ

}
. (28b)

In the following, we use the symbol ρ(0, s) to indicate the ρ-value reached by the point (α(1 − s), 0, s) after 
its transition from L to C0 by means of the layer problem. If the solution (ξ, ρ) of the reduced flow (21)
starting at (0, ρ(0, s)) reaches ξ = 1, we denote its value of ρ at ξ = 1 by ρ(1, s). When α < 1

2 , the reduced 
flow can either start on L+ or at l, while for α > 1

2 it must start on L+. Analogously, when β < 1
2 , the 

reduced flow can either end on R− or at r, while for β > 1 it must end on R−.
2



14 A. Iuorio et al. / J. Math. Anal. Appl. 510 (2022) 126018
Based on this geometric interpretation of the boundary conditions, we proceed with the construction of 
the singular orbits by connecting L+ ∪ l and R− ∪ r by means of the reduced flow (20) on C0. In doing so, 
we first let L+ in (28a) flow by means of the reduced flow until ξ = 1: we call the corresponding set L+

1 .

L+
1 := {(ρ(1, s)(1 − ρ(1, s)), 1, ρ(1, s)) : ρα ≤ s ≤ 1} . (29)

If α ≥ 1
2 then l ∈ L+, and the evolution of l by means of the reduced flow is already included in L+

1 . If 
α < 1

2 then l /∈ L+, and therefore the corresponding point at ξ = 1 must be defined separately as

l1 := {(ρ(1, α)(1 − ρ(1, α)), 1, ρ(1, α))} . (30)

Due to the structure of the reduced flow, this point does not exist for all values of α < 1
2 (see Remark 2).

A singular orbit is then given by matching the slow and fast pieces obtained by investigating the reduced 
and layer problems, respectively. More specifically, a singular orbit exists if and only if the intersection 
between the sets L+

1 ∪ l1 and R− ∪ r is non-empty, and it is unique if this intersection consists of one point.
Our analysis of the existence and structure of singular orbits is based on six special orbits S1, S2, S3, S̃1, 

S̃2, S̃3 of the reduced flow, where S2, S̃2 depend on α and S3, S̃3 on β (see Fig. 6):

• The orbit S1 is defined as the one starting at ξ = 0 at a ρ-value below 1
2 and ending at the fold line S, 

that is ρ = 1
2 at ξ = 1. We refer to the corresponding initial value at ξ = 0 by ρf .

• The orbit S2 is defined as the one starting at ρ = α at ξ = 0 with α ∈ (0, 1). For α ≤ ρf or α ≥ 1 − ρf , 
the corresponding final value of ρ at ξ = 1 is denoted by ρ∗(α). For ρf ≤ α ≤ 1 − ρf , S2 ends on the 
fold line S.

• The orbit S3 is defined as the one ending at ρ = 1 − β at ξ = 1 with β ∈ (0, 1). For β ≤ ρ∗(α) or 
β ≥ 1 − ρ∗(α), the corresponding initial value of ρ at ξ = 0 is denoted by ρ∗(β). When β = 1

2 , we define 
S3 = S̃1.

• For i = 1, 2, 3, we define S̃i as the reflection of the orbit Si with respect to ρ = 1
2 .

Depending on the values of α and β, one of these orbits corresponds to the slow part of the singular orbits 
we will construct.

Changing α and β influences the orbits S2, S̃2 and S3, S̃3. We will show in the following that the α, β
dependent mutual position of these orbits determines the type of singular solution of the boundary value 
problem.

The respective values of ρf , ρ∗(α) and ρ∗(β) can be computed explicitly:

ρf := 1
2

(
1 −

√
1 − k(1)

k(0)

)
, (31a)

ρ∗(α) := 1
2

(
1 −

√
1 − 4α(1 − α)k(0)

k(1)

)
, (31b)

ρ∗(β) := 1
2

(
1 +

√
1 − 4β(1 − β)k(1)

k(0)

)
. (31c)

Note that α = 1 − ρ∗(β) is equivalent to β = ρ∗(α).

Remark 2. The point l1 defined in (30) exists if and only if α ≤ ρf .
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Fig. 6. Schematic illustration of the special orbits S1, S2, S3, S̃1, S̃2, S̃3 in (ξ, ρ)-space in the case 1 − ρ∗(β) < α < ρf and β < 1
2 . 

The orbit S1 (solid cyan curve) connects (0, ρf ) and (1, 12 ), the orbit S2 (solid magenta curve) connects (0, α) and (1, ρ∗(α)), and 
the orbit S3 (solid brown curve) connects (0, ρ∗(β)) and (1, 1 −β) with α, β < 1

2 as in (31). The dashed curves represent the orbits 
S̃1 (cyan), S̃2 (magenta), S̃3 (brown), which are symmetric to the corresponding solid ones S1, S2, S3 with respect to ρ = 1

2 . Note 
that for α > 1

2 the orbit S2 lies in Ca
0 , and for β > 1

2 the orbit S3 lies in Cr
0 .

Based on this, we divide the (α, β)-parameter space into six regions Gi, i = 1, . . . , 6 defined via the 
following curves γij (here the indices refer to the adjacent regions):

γ12 := {(α, β) : 0 < α < ρf , β = 1 − ρ∗(α)} , (32a)

γ15 := {(α, β) : 0 < α < ρf , β = ρ∗(α)} , (32b)

γ23 :=
{

(α, β) : α = ρf ,
1
2 < β < 1

}
, (32c)

γ34 :=
{

(α, β) : α = 1 − ρf ,
1
2 < β < 1

}
, (32d)

γ35 :=
{

(α, β) : ρf < α < 1 − ρf , β = 1
2

}
, (32e)

γ46 :=
{

(α, β) : 1 − ρf < α < 1, β = 1
2

}
, (32f)

γ56 :=
{

(α, β) : α = ρ∗(β), 0 < β <
1
2

}
. (32g)

The above curves correspond to situations where some of the orbits Si, S̃i, i = 1, 2, 3 defined above coincide. 
In particular:

• for (α, β) ∈ γ12, we have S2 = S3 (lying in Cr
0);

• for (α, β) ∈ γ15, we have S2 = S̃3;
• for (α, β) ∈ γ23, we have S1 = S2;
• for (α, β) ∈ γ34, we have S̃1 = S2;
• for (α, β) ∈ γ35 ∪ γ46, we have S̃1 = S3;
• for (α, β) ∈ γ56, we have S2 = S3 (lying in Ca

0 ).

Remark 3. Whenever two orbits coincide, their symmetric reflections with respect to ρ = 1 coincide as well.
2
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Fig. 7. (a) Schematic illustration of the regions Gi in (α, β)-space defined in (33) with corresponding prototypical singular solutions 
of type i, i = 1, . . . , 6. The slow parts of the orbits are displayed in blue, while the fast ones (layers) in green. The gray line in the 
insets corresponds to ρ = 1

2 . We remark that the layers at ξ = 0 are particularly tiny in G4 and G6. (b) In the limit of constant k, 
we have ρf = 1 − ρf = 1

2 and a collapse of regions G3. The present analysis for G4 does not cover the case k′ ≡ 0, so that region 
is shown in gray. The picture can then be compared with that of the discrete case, given in [7,26].

The seven curves in (32) split (0, 1)2 into 6 regions Gi, i = 1, . . . , 6 (shown in Fig. 7(a)):

G1 := {(α, β) : 0 < α < ρf , ρ
∗(α) < β < 1 − ρ∗(α)} (33a)

G2 := {(α, β) : 0 < α < ρf , 1 − ρ∗(α) < β < 1} , (33b)

G3 :=
{

(α, β) : ρf < α < 1 − ρf ,
1
2 < β < 1

}
, (33c)

G4 :=
{

(α, β) : 1 − ρf < α < 1, 1
2 < β < 1

}
, (33d)

G5 :=
{

(α, β) : 1 − ρ∗(β) < α < ρ∗(β), 0 < β <
1
2

}
, (33e)

G6 :=
{

(α, β) : ρ∗(β) < α < 1, 0 < β <
1
2

}
. (33f)

We will show (in Proposition 2) that within each of those regions the structure of the singular solutions 
is the same. Note that our construction of singular solutions works also on all the boundary curves defined 
in (32) except for γ15 and γ23 where singular solutions are not unique (see Remark 5).

To this aim, we introduce the following six types of singular solutions (see Fig. 7(a)):

Type 1. Singular solutions which start on Cr
0 at ξ = 0, follow the reduced flow on Cr

0 (where ρ increases), 
and have a layer at ξ = 1 in which ρ increases.

Type 2. Singular solutions which start on Cr
0 at ξ = 0, follow the reduced flow on Cr

0 (where ρ increases), 
and have a layer at ξ = 1 in which ρ decreases.

Type 3. Singular solutions which have a layer at ξ = 0 in which ρ increases, follow the reduced flow on Ca
0

(where ρ decreases), and have another layer at ξ = 1 in which ρ decreases.
Type 4. Singular solutions which have a layer at ξ = 0 in which ρ decreases, follow the reduced flow on Ca

0
(where ρ decreases), and have another layer at ξ = 1 in which ρ decreases.

Type 5. Singular solutions which have a layer at ξ = 0 in which ρ increases, and follow the reduced flow on 
Ca
0 (where ρ decreases).
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Type 6. Singular solutions which have a layer at ξ = 0 in which ρ decreases and follow the reduced flow on 
Ca
0 (where ρ decreases).

More details about the construction and structure of these singular orbits are given in the following proof.

Proposition 2. Let k(x) ∈ C1(R) be monotonically decreasing. Then for each (α, β) ∈ Gi, i = 1, . . . 6 there 
exists a unique singular solution Γi of type i to (9)-(10) composed of segments of orbits of the layer problem 
(16) and the reduced problem (21) satisfying the boundary conditions.

Proof. The proof is based on the shooting technique outlined above. Technically speaking, we show that the 
intersection between the sets L+

1 ∪ l1 in (29)-(30) and R− ∪ r in (27)-(28b) is non-empty, and in particular 
consists of one point. This gives us the unique values of ρ0, ρ1 for which a singular orbit exists depending 
on α and β, which in turn allows us to identify the six types of singular solutions corresponding to the 
six regions defined in (33). While we claim the existence of singular solutions only in the open regions Γi, 
i = 1, . . . , 6 we also comment on the singular configurations where (α, β) lies on the curves γij from (32).

In principle there are four possible ways for the intersection between L+
1 ∪ l1 and R− ∪ r to occur; three 

of these lead to two possible profiles, each corresponding to two regions in (α, β)-parameter space, while the 
fourth case (l1∩r) leads to an empty intersection, since l1 and r are separated from L+

1 and R−, respectively, 
only for α and β both less than 1

2 , and in this case they can never coincide. Thus, we are left with:

Case 1: l1 ∩R− �= ∅. From the investigation of this case we obtain orbits of type 1 and 2.
Case 2: L+

1 ∩R− �= ∅. From the investigation of this case we obtain orbits of type 3 and 4.
Case 3: L+

1 ∩ r �= ∅. From the investigation of this case we obtain orbits of type 5 and 6.

We point out that in our arguments below we use the fact that k(0)
k(1) > 1, deriving from assumption (12). In 

the following, we examine Cases 1-3 in more detail.

Case 1: l1 ∩ R− �= ∅. By definition of l1, this occurs only when α ≤ ρf . In this case, we have l1 ∈ R−, 
which implies that p0 = l and, consequently, ρ0 = α. Moreover, since ρ(1, s) = ρ∗(α), following the flow of 
the layer problem until it hits R we obtain

ρ1 = α(1 − α)k(0)
βk(1) . (34)

By construction, we have that p0 ∈ Cr
0 , so the singular orbit in this case consists in a slow motion along Cr

0
where ρ increases followed by a layer at ξ = 1. The nature of this layer depends on α and β as follows:

• When α < ρf and ρ∗(α) < β < 1 − ρ∗(α), i.e. for (α, β) ∈ G1, ρ increases along the boundary layer at 
ξ = 1. The corresponding singular solution is therefore of type 1 (see Fig. 8).

• When α < ρf and β > 1 − ρ∗(α), i.e. for (α, β) ∈ G2, ρ decreases along the boundary layer at ξ = 1. 
Therefore, the corresponding singular solution is of type 2 (see Table B.1, Appendix B).

We note that when α < ρf and β = 1 − ρ∗(α) (i.e. on γ12) there is no layer at ξ = 1.

Case 2: L+
1 ∩ R− �= ∅. We observe that by definition L+

1 ⊂ Ca
0 and R− ⊂ Cr

0 . Therefore, these two sets 
have a non-empty intersection if and only if α ≥ ρf and β ≥ 1

2 , consisting in the point

q =
(

1
, 1, 1

)
∈ S. (35)
4 2
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Fig. 8. Schematic representation of a singular solution of type 1. (a) Boundary conditions at ξ = 0 in (j, ρ)-space: the orange line 
is L, while the orange curve is L+. The red dot represents p0, where in this case p0 = l. (b) Slow evolution on C0 from (0, α)
to (1, ρ∗(α)) (blue curve). The orange lines are the projection of L (at ξ = 0) and L+ (at ξ = 1) on C0, while the purple one 
represents the projection of R− on C0 at ξ = 1. The orange dots correspond to l (at ξ = 0) and l1 (at ξ = 1), while the purple 
dot corresponds to r. (c) Here, we consider ξ = 1 in (j, ρ)-space. The red dot corresponds to p1, while the purple line and curve 
represent the manifolds R and R−, respectively. The green line corresponds to the layer of the singular orbit where ρ increases 
from ρ∗(α) to ρ1 = α(1−α)k(0)

βk(1) . (d) Singular solution of type 1 in (ξ, ρ)-space. (e) Singular solution of type 1 in (j, ξ, ρ)-space. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

The fact that ρ(1, s) = 1
2 , i.e. ρ(0, s) = 1 − ρf , allows us to identify the starting and ending points of the 

orbit by following the flow of the layer problem (backwards at ξ = 0 and forward at ξ = 1). This leads to 
two layers at both endpoints, and

ρ0 = 1 − k(1)
4αk(0) , ρ1 = 1

4β . (36)

In particular, we have:

• When ρf < α < 1 − ρf and β > 1
2 , i.e. for (α, β) ∈ G3, ρ increases along the boundary layer at ξ = 0. 

This implies that the singular orbit is of type 3 (see Table B.1, Appendix B).
• When α > 1 − ρf and β > 1

2 , i.e. in G4, ρ decreases along the boundary layer at ξ = 0, and the singular 
solution is of type 4 (see Table B.1, Appendix B).
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We note that when α = 1 − ρf and β > 1
2 (i.e. on γ34) we have no boundary layer at ξ = 0.

Case 3: L+
1 ∩ r �= ∅. By definition of r, this occurs only when β < 1

2 . In this case, we have r ∈ L+
1 , 

which implies that p1 = r and, consequently, ρ1 = 1 −β. Moreover, since ρ(0, s) = ρ∗(β), following the layer 
problem backwards until it hits L, we obtain

ρ0 = 1 − β(1 − β)k(1)
αk(0) . (37)

Consequently, there is a boundary layer at ξ = 0. Since L+
1 ⊂ Ca

0 , ρ decreases along the reduced flow. There 
are two possible kinds of layers at ξ = 0, i.e.

• If 1 − ρ∗(β) < α < ρ∗(β) and β < 1
2 , i.e. if (α, β) ∈ G5, ρ is increasing and the singular solution is of 

type 5 (see Table B.1, Appendix B).
• If α > ρ∗(β) and β < 1

2 , i.e. if (α, β) ∈ G6, ρ is decreasing, and we have a singular solution of type 6
(see Table B.1, Appendix B).

We note that when α = ρ∗(β) and β < 1
2 (i.e. on γ56), there are no boundary layers. We also remark that 

when α > ρf and β = 1
2 (i.e. on γ35 and γ46), we have a unique solution with no boundary layer at ξ = 1

satisfying

ρ(0, s) = 1 − ρf , ρ(1, s) = 1
2 . � (38)

Remark 4. The construction in Case 3 is essentially the same as the one in Case 1 upon reversal of the flow 
direction in (13).

Remark 5 (Excluded cases). When α ≤ ρf and β = ρ∗(α) - i.e. when (α, β) ∈ γ15 - we have that both L+
1 ∩r

and l1∩R− are non-empty. Consequently, there are two possible reduced solutions, satisfying (see Fig. 9(a))

(a)
{
ρ(0, s) = ρ0 = α,

ρ(1, s) = β,
or (b)

{
ρ(0, s) = 1 − α,

ρ(1, s) = ρ1 = 1 − β.
(39)

In this case, we have a continuum of singular solutions, since at any ξ ∈ [0, 1] it is possible to jump from 
the slow trajectory of the reduced flow in (a) to the one in (b) by means of the flow of the layer problem. 
Analogously, we obtain a continuum of singular solutions when α = ρf , β ≥ 1

2 , i.e. when (α, β) ∈ γ23. In this 
case, in fact, we have that both L+

1 ∩R− and l1 ∩R− are non-empty, and therefore there are two possible 
reduced solutions (with jumps possible at any ξ ∈ [0, 1] via the flow of the layer problem) satisfying (see 
Fig. 9(b))

(c)
{
ρ(0, s) = ρ0 = ρf ,

ρ(1, s) = 1
2 ,

or (d)
{
ρ(0, s) = 1 − ρf ,

ρ(1, s) = 1
2 .

(40)

Hence, our strategy to construct singular solutions to Equation (9)-(10) as in Proposition 2 does not give 
uniqueness, and therefore the methods based on transversality arguments to infer persistence of solutions 
for 0 < ε � 1 do not apply. We leave the analysis of this more delicate situation for future work.

We now prove that the singular solutions from Proposition 2 perturb to solutions of (9)-(10) for ε
sufficiently small.



20 A. Iuorio et al. / J. Math. Anal. Appl. 510 (2022) 126018
Fig. 9. Schematic representation in (ξ, ρ)-space of the slow portions (blue curves) of the possible singular orbits for (a) (α, β) ∈ γ15
and (b) (α, β) ∈ γ23. The orange and purple curves correspond to the projection of L+ and R, respectively, on the (ξ, ρ)-space. 
Fast jumps from the slow solution in Cr

0 to the slow solution in Ca
0 are possible at each ξ ∈ [0, 1]. (For interpretation of the colours 

in the figure(s), the reader is referred to the web version of this article.)

Theorem 2. For each (α, β) ∈ Gi, i = 1, . . . , 6, the boundary value problem (9)-(10) has a unique solution 
ρ(x, α, β, ε) for ε sufficiently small. In the phase-space formulation (13), this solution corresponds to an orbit 
Γi
ε which is O(εμ)-close to Γi in terms of Hausdorff distance, where μ = 1 for i = 1, 2, 5, 6 and μ = 2/3 for 

i = 3, 4.

Proof. The solutions for ε small are obtained by perturbing from the singular solutions Γi, i = 1, . . . , 6. 
More precisely, we show that the manifold obtained by flowing the line L of points corresponding to the 
boundary conditions at ξ = 0 to ξ = 1 for ε small intersects the line R of points corresponding to the 
boundary conditions at ξ = 1 in a point which is close to the corresponding point of the singular solution. 
Analogously to Proposition 2, this is done by considering three cases.

Case 1: (α, β) ∈ Gi, i = 1, 2. In this case, the singular solution starts at the point p0 = l ∈ L (see 
Proposition 2). We recall that the singular solution consists of a slow segment obtained by flowing l to l1
with the reduced flow on the repelling part Cr

0 of the critical manifold, followed by a layer from l1 to p1 ∈ R
(see Fig. 8-Table B.1, type 2).

We show below that for 0 < ε � 1 the flow defined by (13) takes a suitable small segment of L to a curve 
L1,ε in the plane ξ = 1. Furthermore, we show that L1,ε intersects R in a point p1,ε which corresponds to 
the right end-point of the solution of the boundary value problem. Note that the full solution for ξ ∈ [0, 1]
is obtained by following the flow backward from p1,ε to ξ = 0. In more detail, Fenichel theory [8] implies 
that (compact subsets of) Cr

0 perturbs smoothly to a repelling slow manifold Cr
ε with an unstable foliation 

Fu
ε . The line L intersects Cr

ε in a point lε which is C1 O(ε)-close to l. The image of lε by the slow flow on Cr
ε

at ξ = 1 is denoted by l1,ε. The unstable fiber Fu
ε (l1,ε) is C1 O(ε)-close to the corresponding fiber Fu

0 (l1)
of the layer problem. Since L intersects Cr

0 transversely in l, most orbits starting in L are repelled away 
immediately, and only points on L exponentially close to lε stay in a neighbourhood of the singular orbit 
Γi, i = 1, 2, up to ξ = 1, where they are denoted by L1,ε. The exponential expansion along the unstable 
fibers implies that L1,ε is C1 O(ε)-close to Fu

ε (l1,ε). Hence, L1,ε intersects R in a point p1,ε as claimed.

Case 2: (α, β) ∈ Gi, i = 3, 4. In this case, the singular solution starts with a layer connecting the point 
p0 ∈ L to a point on Ca

0 , followed by a segment of the reduced flow ending at the fold point q ∈ S, followed 
by a layer ending at p1 ∈ R. As before, we follow the line L of boundary conditions at ξ = 0 forward by the 
flow (13) and show that it intersects the line R of boundary conditions at ξ = 1. Since the singular solution 
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Fig. 10. Schematic representation of the manifold Mε (red surface). This manifold limits on the union of the orbits which solve 
the layer (16) and the reduced (20) problem (green and blue surfaces, respectively) as ε → 0 starting from a small segment on L
(orange line) at ξ = 0. The purple dot corresponds to p1, while the black dot represents the point p1,ε where Mε and R (purple 
line) intersect. The full orbit for the boundary value problem is then obtained starting from p1,ε and tracking it backward up to 
ξ = 0. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

involves the point q on the non-hyperbolic fold line S, results on extending GSPT to such problems [30] are 
needed here. Consider a small segment of L containing p0 and denote its extension by the forward flow of 
(13) by Mε for ε small. Since L is a line and Mε is defined by the flow, it is a smooth, two-dimensional 
manifold. Fenichel theory and the results in [30] on the dynamics close to fold-curves imply that parts of 
Mε are close to p1 and are O(ε2/3)-close to the plane {j = 1

4} in a neighbourhood of p1 (see Fig. 10). Hence, 
R intersects Mε in a point p1,ε (close to p1) which corresponds to the right end-point of the boundary value 
problem. Again, the full solution is obtained by following the flow backward to ξ = 0.

Case 3: (α, β) ∈ Gi, i = 5, 6. This case is completely analogous to Case 1 upon reversal of the flow 
direction. �
Remark 6. Note that in layers away from the fold line S solutions have exponential decay/growth rates, while 
in layers which involve the fold points on S solutions have slower, algebraic decay/growth rates. Moreover, 
the behaviour near fold points is also responsible for the larger discrepancy between singular solutions and 
true orbits of (9)-(10) in regions Gi, i = 3, 4. These effects are also observed in the computational results 
presented in Section 5.

Remark 7 (Straight corridors.). For functions k such that k(x) ≡ k0, with k0 > 0 - describing a straight 
corridor - Equation (9) implies that j must be constant along solutions of the boundary value problem. The 
construction described in Section 4 therefore simplifies, since Equation (13) and (15) become

ε
.
ρ = ρ(1 − ρ) − j,
.
ξ = 1,

(41)

and

ρ′ = ρ(1 − ρ) − j,

ξ′ = ε,
(42)

respectively. The reduced problem (19) is given by
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0 = ρ(1 − ρ) − j,
.
ξ = 1,

(43)

whose orbits consist in straight lines with constant ρ on C0. In this situation, we have that ρf = 1
2 . Therefore 

the region G3 disappears, leaving only 5 regions in total (see Fig. 7(b)). The singular solutions for (α, β) ∈ G1, 
G2, G5, and G6 are constructed as in Proposition 2. In G4, however, the slow transition occurs entirely on S, 
where the only variable which varies is ξ while ρ and j remain constant. Due to its high degeneracy, this 
case is not covered by existing results from GSPT.

For ε > 0 and k ≡ 1, we give explicit expressions for ρ in the Appendix C. We also show that Jmax :=
maxα,β J = 1

4 + o(ε). Therefore, in the corresponding singular limit ε = 0 we have Jmax = 1
4 . This agrees 

with the fact that the maximum (constant) value achieved by j in region G6 is j = 1
4 , and Jmax = jmax.

Remark 8. We briefly comment on more realistic and challenging geometries, e.g. cases where k is discon-
tinuous and/or non monotonic, which will also be considered in Section 5. In these cases, in fact, numerical 
experiments show that solutions share similar features in each monotone region as well.

An interesting first class of such problems consists of corridors with piecewise constant functions k(x): 
in this case, the orbits necessarily cross these discontinuities. Since geometric singular perturbation theory 
requires at least C1 smoothness, standard arguments for the persistence of singular solutions are not directly 
applicable and additional matching arguments are needed at the discontinuities of k(x).

Another interesting case are corridors corresponding to smooth functions k(x) which have a nondegenerate 
minimum in the interval (0, 1), such as e.g.

k(x) = 1 + c1 cos(2πx), (44)

with 0 < c1 < 1. Further below, we also refer to those domains with non monotonic k(x) as “bottlenecks”. 
In this case, the analysis can in principle be carried out in a similar way as for monotone functions k(x). 
However, new phenomena arise at points on the fold line ρ = 1

2 corresponding to the minimum of k(x) where 
the derivative of k vanishes. The corresponding points on the fold line are called folded saddles. At these 
special singularities solutions of the reduced problem may cross the fold line from Cr

0 to Ca
0 and vice versa, 

e.g. see the folded saddle (j, ξ, ρ) =
( 1

4 ,
1
2 ,

1
2
)

(see Fig. 11). These special solutions are known to persist for 
ε � 1 as so called canard solutions [29,19]. The analysis of the impact of canard solutions on the existence 
and types of solutions of the boundary value problem (9)-(10) is left for future work.

5. Numerical experiments

We conclude by complementing our the analytical results by means of computational experiments. System 
(9)-(10) is quadratic in ρ, which makes Newton’s method an ideal numerical approach. The principle is rather 
standard so we recall it here only roughly. Starting from a partition of the interval, we consider ρh and wh two 
continuous functions which are linear on each sub-interval. The equation in its weak form (11) is discretised 
accordingly, yielding a system of nonlinear equation, with the value of ρh at each node as unknown. This 
system is then solved using Newton’s method. The solver is implemented using the finite element library
FEniCS[21,22]. This proves sufficient for our purposes and we do not use discontinous Galerkin methods as 
in e.g. [4].

Newton’s method requires a sufficiently good initial guess - which is not necessarily available for general 
functions k. A suitable choice is important for small diffusitivies, where we expect the formation of sharp 
boundary layers. By integration of (9), the following bound holds:

‖∂xρ‖2 ≤ c(ε) :=

√
Lmax k

4 +
√

L(max k)2
16 + 4αεmin kmax k ε→∞−→ 0 ,
2εmin k
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Fig. 11. Reduced flow associated to Equations (13)-(14) with k(x) = 1 + c1 cos(2πx) and c1 = 0.3. The dashed line indicates the 
line of fold points located at ρ = 1

2 . The point ( 1
2 , 12 ) is a folded saddle.

and we see that for sufficiently large values of ε a constant initial guess is suitable. We therefore propose 
and implement the following iterative procedure:

1. Pick a sequence ε1 > ... > εn = ε with ε1 � c−1(1).
2. Set the initial guess ρ0 ≡ 1

2 and i = 0.
3. Solve for ρi as the numerical solution of (9)-(10) with εi using Newton’s method with initial guess ρi−1.
4. Set i = i + 1 and go to step 3 until i = n.

5.1. Comparison of the 2D model and the 1D area averaged model

We start by comparing the solutions of the 1D model to the averaged solutions of the 2D model. In doing 
so we consider four different types of geometries, all defined on the interval [0, 1]:

(a) a straight corridor, where k ≡ 1,
(b) a closing corridor, where k(x) = 2 − x,
(c) a piecewise constant narrowing corridor, where k(x) = 2 − 1[ 12 ,1](x)
(d) a bottleneck, where k(x) = 2 − 1[ 13 ,

2
3 ](x).

We emphasise the fact that the choices (c) and (d) of k correspond to a width-to-length ratio of 2 : 1, which 
does not agree with the assumptions of the proposed 1D approximation because of their lack of smoothness.

The choice of the vector u can have a strong impact on the stationary profiles, and thus on the quality 
of the 1D approximation. To illustrate this, we discuss two different possibilities for u in the following. In 
the first instance, u = ue is given by the solution of the eikonal equation, see [6]. In particular ue = ∇φ

where φ solves

|∇φ| = 1 for x ∈ Ω ,

φ = 0 for x ∈ Σ .

The value of the potential φ = φ(x, y) then corresponds to the distance from (x, y) to the exit, with the 
flow of ue corresponding to the shortest path. This choice is reasonable for single individuals but the 
corresponding streamlines tend to collide at concave corners. This can lead to locally higher densities. In 
the second instance, u = uL, with uL = ∇ψ/|∇ψ|, where ψ solves
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−Δψ = 0 for x ∈ Ω ,

∇ψ · n =

⎧⎪⎪⎨
⎪⎪⎩
−1 for x ∈ Γ ,

1 for x ∈ Σ ,

0 for x ∈ ∂Ω \ Γ ∪ Σ .

This choice was used in [4] and also by Piccoli and Tosin [23], albeit with Dirichlet boundary conditions. 
The flow does not correspond to geodesics in this case, and streamlines make a smooth arc around cor-
ners.

The results are presented in Table 1, where we show the solution to the one-dimensional model (9), and 
the solutions to the two-dimensional model (3), averaged along the y direction. The dotted line corresponds 
to u = ue, the dashed line to u = uL. For case (a), u = (1, 0)T for both the eikonal and the Laplace 
equation. Since the solution of the 2D problem does not depend on y, the 1D approximation is exact. As 
expected, solutions match in this case.

Generally speaking, the 1D approximation is similar or better for the Laplace field i.e. when u = uL. 
When u = ue, there are large discrepancies, in particular in the low density regime. In this case, the 2D 
solution presents significantly higher densities ahead of narrower sections. One possible explanation is the 
collision of streamlines on the edge of these narrow sections. The low density regime (ρ < 1

2 ) shows a 
boundary layer near x = 1, while in the high density regime (ρ > 1

2 ), it is close to x = 0.
When k is not smooth, that are cases (c) and (d), there is a noticeable discrepancy between the 1D 

solution and the averaged 2D solution, also for the Laplace field.
In the low density regime, no boundary layer is present close to x = 0, so that one can expect the value 

of ρ(0) (and thus of J � k(0)ρ(0) (1 − ρ(0))) to be given by the boundary condition: ρ � α. A similar 
statement holds true for the high density regime at the right boundary. This explains why for both regimes 
the value of J is very similar across the chosen geometries, if one takes into account the difference in width 
at the boundary: in (a) the width is 1 on the left, as opposed to 2 for other geometries. Similarly, (d) has a 
width of 2 on the right instead of 1.

Finally, we observe that in cases (c) and (d), in which the width is piecewise constant, the profile of ρ on 
each segment is similar to one of the three found in the case (a) where k is constant. This can be explained 
by the fact that ρ solves an equation similar to (C.1) on each segment - however, with appropriate interface 
conditions. The profiles are then given by TJ,α,β. An interesting problem is how to define the correct interface 
conditions. We leave this question for further research.

5.2. Singular orbits vs. viscous profiles

The GSPT analysis of Section 4 provides us with limiting profiles as ε → 0. We compare them with the 
solutions of (9)-(10) for small ε in the case k(x) = 2 − x.

We start with a quantitative comparison for a specific choice of (α, β) in Fig. 12, which shows the 
convergence of the solution in the inflow limited regime to a singular solution of type 1.

The convergence of solutions towards the singular orbits as given by the GSPT is not uniform w.r.t. 
(α, β). This implies that a direct computation of the phase diagram (Fig. 7(a)) for a fixed 0 < ε � 1 is not 
possible. Therefore, we perform a qualitative comparison across the (α, β) parameter space, by looking at 
the phase diagrams both in the case ε = 10−3 and ε = 0. The results for these computational experiments 
are shown in Fig. 13. There is good qualitative agreement between the two cases, in particular the location 
and variation of boundary layers (increasing or decreasing) match in all regimes. There are also no boundary 
layers visible in the numerical solution for ε > 0 at boundary curves γij, except between G3 and G4 where a 
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Table 1
Comparison of the stationary profiles for different geometries and different regimes, with ε = 10−2. The first column shows both 
ue (left) and uL (right). Legend: Solid lines refer to solutions of (9), dotted lines indicate the y-average of the solution to (3) for 
u = ue, and dashed lines represent the y-average of the solution to (3) for u = uL.

Geometry 
Streamlines 
ue uL

Regime
Low density 
α = 0.05, β = 0.2

High density 
α = 0.3, β = 0.1

High flux 
α = 0.8, β = 0.8

(a)

(b)

(c)

(d)

right boundary layer is present, as is the corresponding singular case. This indicates that the singular phase 
diagram provides a good description of the behaviour for 0 < ε � 1.

Remark 9. We now give a brief interpretation of the bifurcation diagram in Fig. 13 in terms of pedestrian 
dynamics. Within each regime we either observe low or high-density densities, that is above or below the 
value 12 . The width of the boundary layers at the entrances and exits depends on the diffusivity, their height 
on the respective inflow and outflow rates. We observe high density regimes if the inflow rate is larger than 
the outflow (red region in 13) with a sharp increase close to the entrance. High outflow rates relate to a fast 
drop at the exit, shown in G2, G3 and G4.

In practice, the location of the boundary layers as well as the density regime is most relevant. The former 
allows to draw conclusions about the formation of congested (and potentially dangerous) regimes, while the 
latter can be used to estimate the capacity of rooms.
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Fig. 12. Stationary profiles for the particular choices of parameters (α, β) = (5.2 ×10−2, 2.5 ×10−1), which corresponds to region G1. 
Left: numerical solutions for various values of ε approaching the density profile given by the singular orbit ρΓ1 . Right: Difference 
between ρΓ1 and the sequence of numerical solutions as ε decreases: (◦) L2-error, (�) pointwise error at x = 1, i.e. the difference 
between ρ(1) and the maximum value of the boundary layer given by the singular orbit, (•) limiting flux vs numerical flux Jnum. 
We observe that the error at the boundary is roughly of order O(ε), and as expected, the convergence in L2 norm is of order 
roughly O(ε

1
2 ), due to the boundary layer.

Fig. 13. Phase diagram showing different profiles ρ of (9)-(10) for k(x) = 2 − x and ε = 10−3. The underlying regions in the (α, β)
space are the ones defined for the singular limit ε = 0. The 4 cases in the top right-hand corner (green and green cross-hatched 
regions) involve the fold line S and present a right boundary layer which is not as sharp as cases away from S, for example in the 
blue and red areas. The gray line indicates the value ρ = 1

2 . We refer to Remark 9 for detailed comments. (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article.)

5.3. Phase diagrams for geometries with bottlenecks

In this section we investigate domains which have a narrow midsection. In particular we consider the 
following situations:

(d) A piecewise constant bottleneck, that is k(x) = 2 − 1[ 13 ,
2
3 ](x), as already defined above.

(d’) A smooth bottleneck

k(x) =
{

2 for x ∈ [0, 1
3 ) ∪ (2

3 , 1] ,
c1 + c2 cos

(
3 · 2π(x− 1

2 )
)

otherwise ,

where the parameters (c1, c2) are chosen such that k
( 1

3
)

= k
( 2

3
)

= 2, k
( 1

2
)

= 1, k′
( 1

2
)

= 0. This 
choice of k differs from the one in (44), to better isolate boundary layers.
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Fig. 14. Phase diagrams for the cases (d) and (d’). Around the central plot, the ρ profiles corresponding to a particular choice of α
and β are shown. The horizontal gray line highlights the value 1

2 . The parameter ε is set to 10−2.

We note that the general behaviour of stationary states is comparable for (d) and (d’). In summary, we 
observe (see Fig. 14):

(O1) The density ρ transitions out of the low density regime very quickly as α increases slightly: for this 
choice of parameters, ρ is very sensitive on the value of α.

(O2) The density ρ takes values larger (resp. smaller) than 1
2 on the left (resp. right) of the interval. The 

boundary layers at the endpoints can either be increasing or decreasing.
(O3) The density ρ transitions to the high density regime very quickly as β decreases slightly: ρ depends 

very sensitively on β.
(O4) In the high density regime, the left boundary layer changes from increasing to decreasing as α increases.
(O5) Along the diagonal α = β, the boundary layer moves to the centre of the domain as α and β decrease.
(O6) In the low density regime, the right boundary layer changes from increasing to decreasing as β increases.

Loosely speaking, the behaviour around (O4) and (O6) is comparable with the one in a straight or a 
closing corridor, corresponding to high density and low density regimes, respectively. They relate to the 
reduced dynamics restricted to the attractive and repulsive manifolds Ca

0 and Cr
0 , respectively.

In the upper-right quadrant (O2), we observe a transition from Ca
0 on the left of the interval, to Cr

0 on 
the right, which cannot happen for k′ < 0. This hints at the involvement of the set S of critical points of C0, 
which complicate the analysis. How this regime appears from the high/low density regime (O4) and (O6) is 
shown in groups (O3) and (O1).

Finally, group (O5) shows how starting from situation (O2) for α = β = 1
2 , the boundary layers migrate 

to the middle of the interval as the value of α decreases and eventually meet. Here, the behaviour is not 
well defined in the limit ε = 0, as these are, in fact, the regimes such that canard orbits emerge, i.e. orbits 
which transition in or near repelling slow manifolds for long times. This claim is further supported by the 
observed numerical degeneracy in the corresponding numerical experiments.

6. Conclusion

In this paper, we analyse the stationary profiles of a mean-field model for unidirectional pedestrian flows 
for different inflow and outflow boundary conditions and geometries. The considered 1D model is based on 
averaging the pedestrian flow over the cross section of the domain and corresponds to a viscous Burgers’ 
type equation with nonstandard boundary conditions. Its stationary profiles exhibit boundary layers at 
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entrances and exits depending on the inflow and outflow rates. We use PDE techniques as well as GSPT 
to analyse the structure and location of these layers and support our findings with numerical experiments. 
These results are valid in straight and closing or opening domains. However, systematic computational 
experiments as well as preliminary analytic results for more general domains indicate that our strategy can 
be further developed to cover the case of bottlenecks. The numerical results illustrate the stationary profiles 
associated to more complex domains, such as corridors of piecewise constant width. These can be viewed as 
a concatenation of the rigorously analysed stationary straight corridor profiles with suitable, but currently 
unknown, interface conditions.

Furthermore, we discuss the approximation quality of the 1D area averaged model for a range of inflow 
and outflow conditions as well as computational domains. It is shown to depend strongly on the choice 
of the preferred direction u for the 2D model. Our experiments show that solutions corresponding to the 
vector field given by solving a Laplace equation are well approximated, even if the width of the domain is 
large with respect to the length. In particular, the approximation can be much better than when using the 
eikonal equation to compute the vector field u.

Future research will focus on open modelling and analysis questions. First, we wish to extend our analysis 
to domains where the function k has a vanishing derivative (such as bottlenecks). In this situation, we are 
particularly interested in solutions involving canard segments, which emerge for some parameter regimes 
and cross the line of fold points at a folded singularity. Moreover, using GSPT, we plan to further investigate 
the critical case where an interior layer occurs, the location of which is not known for ε = 0, that is for (α, β)
on the curve γ15 ∪ γ23. Another interesting perspective lies in model development and calibration - we have 
seen that the area averaged 1D model approximates the full 2D model in certain parameter regimes very 
well, but fails in others. These shortcomings are caused by the underlying averaging assumption as well as 
the boundary conditions. We aim to investigate suitable scaling and modelling alternatives in the future.
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Appendix A. Proof of the existence and uniqueness

We start by defining the entropy

E[ρ] =
L∫

0

(
ρ log ρ + (1 − ρ) log(1 − ρ) + x

ε
ρ
)

dx , (A.1)

and rewrite (9) as

∂x ·
(
εk(x)ρ(1 − ρ)∂x

δE[ρ]
δρ

)
= 0 (A.2)

where δ
δρ denotes the variational derivative. We can now go ahead with the

Proof of Theorem 1. We devide the proof in two steps, first existence, then uniqueness.
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Existence. Without loss of generality, we can set ε = 1 by scaling and define the entropy variable

ψ := δE[ρ]
δρ

= log ρ− log(1 − ρ) + x .

Equation (9) then reads as

∂x (k(x)A(ψ)∂xψ) = 0 , (A.3)

where A(ψ) = eψ−x

(1+eψ−x)2 , with boundary conditions

−A(ψ)∂xψ =
{
α 1

1+eψ−x at x = 0 ,
β eψ−x

1+eψ−x at x = L .

Following [4], we introduce the modified operator Aδ := A + δ, and consider the regularised equation

∂x (k(x)Aδ(ψδ)∇ψδ) + δψδ = 0 ,

for which we can use a fixed-point argument to show existence of weak solutions. To this aim, we introduce 
Ãδ(x) := Aδ(ψ̃(x)) for any ψ̃ ∈ L2 and we consider the linearised problem

∂x
(
k(x) Ãδ∇ψ̃δ

)
+ δψ̃δ = 0 , (A.4)

with nonlinear boundary conditions

−Ãδ∂xψ̃δ =

⎧⎨
⎩α 1

1+eψ̃δ−x
at x = 0 ,

β eψ̃δ−x

1+eψ̃δ−x
at x = L .

This is the Euler-Lagrange equation corresponding to the energy functional

E [ψ̃δ] := 1
2

L∫
0

(
kÃδ|∇ψ̃δ|2 + δ|ψ̃δ|2

)
dx− αF (ψ̃δ(0)) + βG(ψ̃δ(L)) = 0 ,

where F and G are such that

∂ψF (ψ) = −k(0) 1
1 + eψ−x

, ∂ψG(ψ) = −k(L) eψ−x

1 + eψ−x
.

By the convexity of −F and G, we have that E is convex. It is also coercive in the H1-norm, since the 
operator Ãδ satisfies δ ≤ Ãδ ≤ δ + 1

4 . This is enough to show existence of a unique minimiser ψ̃δ ∈ H1 of E , 
and thus a weak solution of (A.4). Then, the bounds on k allow us to follow the arguments of Burger and 
Pietschmann and take the limit δ → 0, see [4].

Uniqueness. Suppose now that ρ1 and ρ2 are two (weak) solutions of (9)-(10) and define v = ρ1 − ρ2, which 
solves

∂x (k(x) [−ε∂xv + (1 − ρ1 − ρ2)v]) = 0 ,

with the boundary conditions:
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ε ∂xv = αv + (1 − ρ1 − ρ2) v , at x = 0 ,

ε ∂xv = −βv + (1 − ρ1 − ρ2) v , at x = L .

Let V be such that ε∂xV = (1 − ρ1 − ρ2) and z such that v = eV z. Then, z is a weak solution of

−ε∂x
(
k(x) eV ∂xz

)
= 0 (A.5)

with boundary conditions

ε ∂xz = αz , at x = 0 ,

ε ∂xz = −βz , at x = L .

Multiplying (A.5) by z and using the corresponding boundary conditions yields

ε

L∫
0

k(x) eV (∂xz)2 dx + αk(0)eV (0)z(0)2 + βk(L)eV (L)z(L)2 = 0 ,

and therefore z = v ≡ 0. �
Appendix B. Geometry of singular solutions of type 2-6

Table B.1
Schematic representation of singular solutions of type 2-6 (rows 1-5, respectively). First column: Boundary conditions at ξ = 0 in 
(j, ρ)-space: the orange line is L, while the orange curve is L+. The red dot represents p0 and the green line illustrates the layer 
where ρ increases (type 3, 5)/decreases (type 4, 6). Second column: Slow evolution on C0 (blue curve). The orange lines are the 
projection of L and L+ on C0, while the purple one represents the projection of R− on C0. The orange dots correspond to l and 
l1, while the purple dot corresponds to r. Third column: Boundary conditions at ξ = 1 in (j, ρ)-space. The red dot corresponds 
to p1, while the purple line and curve represent the manifolds R and R−, respectively. The green line corresponds to the layer of 
the singular orbit where ρ decreases (type 2-4). The red dot represents p1. Fourth column: Singular solution in (ξ, ρ)-space. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Type ξ = 0 ξ ∈ [0, 1] ξ = 1 Singular solution

2

3
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Table B.1 (continued)

Type ξ = 0 ξ ∈ [0, 1] ξ = 1 Singular solution

4

5

6

Appendix C. Explicit profiles for straight corridors

In the following we discuss the different stationary profiles for straight corridors. The profiles depend on 
the inflow and outflow rate, and have a form similar to the well-known travelling wave profiles of the viscous 
Burgers’ equation on the real line.

In case of a straight corridor k ≡ 1 we have

−ε∂xρ + ρ(1 − ρ) = J , (C.1)

for some J ∈ R. If α �= β, then solutions are of the form

ρ = 1/2 +
√
|J − 1/4| TJ,α,β

(
ε−1

√
|J − 1/4|(x− ξ)

)
, (C.2)

where J and ξ ∈ R are determined by α and β. Note that ξ is the value of x for which ρ takes the value 1
2 , 

and that does not necessarily lie inside the domain. The profile shape is given by

TJ,α,β =

⎧⎪⎪⎨
⎪⎪⎩
− tan if J > 1/4 ,

tanh if J < 1/4 and α + β < 1 ,
tanh−1 if J < 1/4 and α + β > 1 .



32 A. Iuorio et al. / J. Math. Anal. Appl. 510 (2022) 126018
Fig. C.15. Phase diagram illustrating the stationary profiles for different inflow and outflow parameters α and β, along with the 
respective expressions for TJ,α,β , in the case k(x) ≡ k0, ε/L = 1. The different shades highlight the 5 different profiles which can 
occur by also taking into account their value with respect to 1

2 , which is shown as a gray line in each of the insets. As ε → 0, the 
picture can be compared with that of the discrete case, given in [7,26].

The critical case α+ β = 1 corresponds to constant densities, and we get ρ ≡ α = 1 − β, J = α(1 − α) =
β(1 − β). In the particular case J = 1/4, the solutions are of the form

ρ = 1
2 + ε

x− ξ
, (C.3)

which characterises the interface between the regions J < 1
4 and J > 1

4 . The solutions allow us to compute 
explicit profiles for all combinations of α and β (extending the results in [4]). The respective bifurcation 
diagram is shown in Fig. C.15. The constant ξ can be computed from the boundary conditions

α
(

1/2 +
√

1/4 − J TJ,α,β

(
ε−1ξ

√
1/4 − J

))
− J = 0 , (C.4)

β
(

1/2 +
√

1/4 − J TJ,α,β

((
ε−1(L− ξ)

)√
1/4 − J

))
− J = 0 . (C.5)

We assume that J �= 1/4 which is generic. In the case α = β we get ξ = L/2 and J is the fixed point of a 
monotone convex function, and in the limit ε → 0, J = α(1 − α). In general, one can solve for ξ in (C.4)
and obtains

ξ = ε√
1/4 − J

T−1
J,α,β

((
J
α
− 1

2

)
1√

1/4 − J

)
.

Alternatively, one can solve for ξ in both (C.4) and (C.5) to get

ξ = L

2 + ε

2
√

1/4 − J

(
T−1

J,α,β

(
J
α − 1

2√
1/4 − J

)
− T−1

J,α,β

( J
β − 1

2√
1/4 − J

))
. (C.6)

From this expression one can see that the point ξ is one the left or the right of x = 1
2 in the case J < 0.25, if 

either α or β is larger in the case α+ β > 1. Note that the position of ξ changes rapidly — a characteristic 
which has been observed for the viscous Burgers’ equations on the real line as well. Furthermore the 
maximum admissible flux in a straight corridor is given by TJ,α,β = − tan and taking the maximum value 
of J for which ρ is continuous. This yields
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Jmax = 1
4 +

(πε
L

)2
. (C.7)

If we take the boundary conditions (10) into account and remembering that Jmax := supα,β J is achieved 
for α = β = 1 (see Lemma 3), we get:

Jmax = 1
4 +

(πε
L

)2
(

1 − 8 ε

L
+ 64

( ε

L

)2
−

32
(
48 − π2)

3

( ε

L

)3
)

+ o
( ε

L

)5
.
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