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Abstract

This paper is devoted to improvements of Sobolev and Onofri inequalities. The additional terms involve
the dual counterparts, i.e. Hardy–Littlewood–Sobolev type inequalities. The Onofri inequality is achieved
as a limit case of Sobolev type inequalities. Then we focus our attention on the constants in our improved
Sobolev inequalities, that can be estimated by completion of the square methods. Our estimates rely on
nonlinear flows and spectral problems based on a linearization around optimal Aubin–Talenti functions.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

E. Carlen, J.A. Carrillo and M. Loss noticed in [12] that Hardy–Littlewood–Sobolev inequal-
ities in dimension d ≥ 3 can be deduced from some special Gagliardo–Nirenberg inequalities
using a fast diffusion equation. Sobolev’s inequalities and Hardy–Littlewood–Sobolev inequali-
ties are dual. A fundamental reference for this issue is E.H. Lieb’s paper [36]. This duality has
also been investigated using a fast diffusion flow in [22]. Although [12] has motivated [22], the
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two approaches are so far unrelated. Actually [22] is closely connected with the approach by
Legendre’s duality developed in [36]. We shall take advantage of this fact in the present paper
and also use of the flow introduced in [22].

For any d ≥ 3, the space D1,2(Rd) is defined as the completion of smooth solutions with
compact support w.r.t. the norm

w �→ ‖w‖ := (‖∇w‖2
L2(Rd )

+ ‖w‖2
L2∗

(Rd )

)1/2
,

where 2∗ := 2d
d−2 . The Sobolev inequality in R

d is

Sd‖∇u‖2
L2(Rd )

− ‖u‖2
L2∗ (

Rd
) ≥ 0 ∀u ∈ D1,2(

R
d
)
, (1)

where the best constant, or Aubin–Talenti constant, is given by

Sd = 1

πd(d − 2)

(
Γ (d)

Γ (d
2 )

) 2
d

(see Appendix A for details). The optimal Hardy–Littlewood–Sobolev inequality

Sd‖v‖2

L
2d

d+2 (Rd )

−
∫
Rd

v(−�)−1v dx ≥ 0 ∀v ∈ L
2d

d+2
(
R

d
)

(2)

involves the same best constant Sd , as a result of the duality method of [36]. When d ≥ 5, using
a well chosen flow, it has been established in [22] that the l.h.s. in (1) is actually bounded from
below by the l.h.s. in (2), multiplied by some positive proportionality constant. In our first result,
we will remove the technical restriction d ≥ 5 and cover all dimensions d ≥ 3. An elementary
use of the duality method – in fact a simple completion of the square method – provides a simple
upper bound on the optimal proportionality constant in any dimension.

Theorem 1. For any d ≥ 3, if q = d+2
d−2 the inequality

Sd

∥∥uq
∥∥2

L
2d

d+2 (Rd )
−

∫
Rd

uq(−�)−1uq dx ≤ Cd‖u‖
8

d−2

L2∗
(Rd )

[
Sd‖∇u‖2

L2(Rd )
− ‖u‖2

L2∗
(Rd )

]
(3)

holds for any u ∈D1,2(Rd) where the optimal proportionality constant Cd is such that

d

d + 4
Sd ≤ Cd < Sd .

Inequality (3) is obtained with Cd replaced by Sd by expanding a well chosen square in Sec-
tion 2. The lower bound on Cd follows from an expansion of both sides of the inequality around
the Aubin–Talenti functions, which are optimal for Sobolev and Hardy–Littlewood–Sobolev in-
equalities (see Section 2 for more details), and spectral estimates that will be studied in Section 3:
see Corollary 6. The computation based on the flow as was done in [22] can be optimized to get
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an improved inequality compared to (3), far from the Aubin–Talenti functions: see Theorem 9 in
Section 4. As a consequence, we also prove the strict inequality Cd < Sd .

In dimension d = 2, consider the probability measure dμ defined by

dμ(x) := μ(x)dx with μ(x) := 1

π(1 + |x|2)2
∀x ∈R

2.

The Euclidean version of Onofri’s inequality [38]

1

16π

∫
R2

|∇f |2 dx − log

( ∫
R2

ef dμ

)
+

∫
R2

f dμ ≥ 0 ∀f ∈D
(
R

2) (4)

plays the role of Sobolev’s inequality in higher dimensions. Here the inequality is written for
smooth and compactly supported functions in D(R2), but can be extended to the appropriate
Orlicz space which corresponds to functions such that both sides of the inequality are finite.

This inequality is dual of the logarithmic Hardy–Littlewood–Sobolev inequality that can be
written as follows: for any g ∈ L1+(R2) with M = ∫

R2 g dx, such that g logg, (1 + log |x|2)g ∈
L1(R2), we have

∫
R2

g log

(
g

M

)
dx − 4π

M

∫
R2

g(−�)−1g dx + M(1 + logπ) ≥ 0 (5)

with ∫
R2

g(−�)−1g dx = − 1

2π

∫
R2×R2

g(x)g(y) log |x − y|dx dy.

Then, in dimension d = 2, we have an analogue of Theorem 1, which goes as follows.

Theorem 2. The inequality

∫
R2

g log

(
g

M

)
dx − 4π

M

∫
R2

g(−�)−1g dx + M(1 + logπ)

≤ M

[
1

16π
‖∇f ‖2

L2(Rd )
+

∫
R2

f dμ − logM

]
(6)

holds for any function f ∈D(R2) such that M = ∫
R2 ef dμ and g = ef μ.

Using for instance [2] or [13, Lemma 2] (also see [37, Chapters 3–4]), it is known that op-
timality is achieved in (1), (2), (4) or (5) when the problem is reduced to radially symmetric
functions. However, no such result applies when considering a difference of the terms in two
such inequalities, like in (3) or (6). Optimality therefore requires a special treatment. In Sec-
tion 2, we shall use the completion of the square method to establish the inequalities (without
optimality) under an assumption of radial symmetry in case of Theorem 2. For radial functions,
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Theorem 1 can indeed be written with d > 2 considered as a real parameter and Theorem 2 cor-
responds, in this setting, to the limit case as d → 2+. To handle the general case (without radial
symmetry assumption), a more general setting is required. In Section 5, we extend the results
established for Sobolev inequalities to weighted spaces and obtain an improved version of the
Caffarelli–Kohn–Nirenberg inequalities (see Theorem 15). Playing with weights is equivalent to
varying d or taking limits with respect to d , except that no symmetry assumption is required.
This allows to complete the proof of Theorem 2.

Technical results regarding the computation of the constants, a weighted Poincaré inequality
and the stereographic projection, the extension of the flow method of [22] to the case of the
dimensions d = 3 and d = 4, and symmetry results for Caffarelli–Kohn–Nirenberg inequalities
have been collected in various appendices.

At this point, we emphasize that Theorems 15 and 16, which are used as intermediate steps
in the proof of Theorem 2 are slightly more general than, respectively, Theorems 1 and 2, except
for the issue of the optimal value of the proportionality constant, which has not been studied. It
is likely that the method used for Sobolev’s inequality can be adapted, but since weights break
the translation invariance, some care should be given to this question, which is of independent
interest and known to raise a number of difficulties of its own (see for instance [24]). The question
of a lower estimate of the proportionality constant in (6) in connection with a larger family of
Onofri type inequalities is currently being studied.

Let us conclude this introduction by a brief review of the literature. To establish the inequal-
ities, our approach is based on a completion of the square method which accounts for duality
issues. Linearization (spectral estimates) and estimates based on a nonlinear flow are used for
optimality issues. Although some of these methods have been widely used in the literature, for
instance in the context of Hardy inequalities (see [8] and references therein), it seems that they
have not been fully exploited yet in the case of the functional inequalities considered in this paper.
The main tool in [22] is a flow of fast diffusion type, which has been considered earlier in [21].
In dimension d = 2, we may refer to various papers (see for instance [17–19]) in connection with
Ricci’s flow for properties of the solutions of the corresponding evolution equation.

Many papers have been devoted to the asymptotic behaviors near extinction of the solutions of
nonlinear flows, in bounded domains (see for instance [4,32,40,7]) or in the whole space (see [35,
39,33] and references therein). In particular, the Cauchy–Schwarz inequality has been repeatedly
used, for instance in [4,40], and turns out to be a key tool in the main result of [22], as well as
the solution with separation of variables, which is related to the Aubin–Talenti optimal function
for (1).

Getting improved versions of Sobolev’s inequality is a question which has attracted lots of
attention. See [9] in the bounded domain case and [10] for an earlier related paper. However,
in [9], H. Brezis and E. Lieb also raised the question of measuring the distance to the manifold of
optimal functions in the case of the Euclidean space. A few years later, G. Bianchi and H. Egnell
gave an answer in [6] using the concentration–compactness method, with no explicit value of the
constant. Since then, considerable efforts have been devoted to obtain quantitative improvements
of Sobolev’s inequality. On the whole Euclidean space, nice estimates based on rearrangements
have been obtained in [16] and we refer to [15] for an interesting review of various related results.
The method there is in some sense constructive, but it hard to figure what is the practical value
of the constant. As in [22] our approach involves much weaker notions of distances to optimal
functions, but on the other hand offers clear-cut estimates. Moreover, it provides an interesting
way of obtaining global estimates based on a linearization around Aubin–Talenti optimal func-
tions.
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2. A completion of the square and consequences

Before proving the main results of this paper, let us explain in which sense Sobolev’s inequal-
ity and the Hardy–Littlewood–Sobolev inequality, or Onofri’s inequality and the logarithmic
Hardy–Littlewood–Sobolev inequality, for instance, are dual inequalities.

To a convex functional F , we may associate the functional F ∗ defined by Legendre’s duality
as

F ∗[v] := sup

( ∫
Rd

uv dx − F [u]
)

.

For instance, to F1[u] = 1
2‖u‖2

Lp(Rd )
defined on Lp(Rd), we henceforth associate F ∗

1 [v] =
1
2‖v‖2

Lq (Rd )
on Lq(Rd) where p and q are Hölder conjugate exponents: 1/p + 1/q = 1.

The supremum can be taken for instance on all functions in Lp(Rd), or, by density, on the
smaller space of the functions u ∈ Lp(Rd) such that ∇u ∈ L2(Rd). Similarly, to F2[u] =
1
2 Sd‖∇u‖2

L2(Rd )
, we associate F ∗

2 [v] = 1
2 S−1

d

∫
Rd v(−�)−1v dx where (−�)−1v = Gd ∗ v with

Gd(x) = 1
d−2 |Sd−1|−1|x|2−d , when d ≥ 3, and G2(x) = − 1

2π
log |x|. As a straightforward con-

sequence of Legendre’s duality, if we have a functional inequality of the form F1[u] ≤ F2[u],
then we have the dual inequality F ∗

1 [v] ≥ F ∗
2 [v]. In this sense, (1) and (2) are dual of each other,

as it has been noticed in [36]. Also notice that inequality (2) is a consequence of inequality (1).
In this paper, we go one step further and establish that

F ∗
1 [u] − F ∗

2 [u] ≤ C
(
F2[u] − F1[u]) (7)

for some positive constant C, at least under some normalization condition (or up to a multi-
plicative term which is required for simple homogeneity reasons). Such an inequality has been
established in [22, Theorem 1.2] when d ≥ 5. Here we extend it to any d ≥ 3 and get and im-
proved value for the constant C.

It turns out that the proof can be reduced to the completion of a square. Let us explain how the
method applies in case of Theorem 1, and how Theorem 2 can be seen as a limit of Theorem 1
in case of radial functions.

Proof of Theorem 1, part 1: the completion of a square. Integrations by parts show that

∫
Rd

∣∣∇(−�)−1v
∣∣2

dx =
∫
Rd

v(−�)−1v dx

and, if v = uq with q = d+2
d−2 ,

∫
Rd

∇u · ∇(−�)−1v dx =
∫
Rd

uv dx =
∫
Rd

u2∗
dx.

Hence the expansion of the square
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0 ≤
∫
Rd

∣∣Sd‖u‖
4

d−2

L2∗
(Rd )

∇u − ∇(−�)−1v
∣∣2

dx

shows that

0 ≤ Sd‖u‖
8

d−2

L2∗
(Rd )

[
Sd‖∇u‖2

L2(Rd )
− ‖u‖2

L2∗
(Rd )

] −
[

Sd

∥∥uq
∥∥2

L
2d

d+2 (Rd )
−

∫
Rd

uq(−�)−1uq dx

]
.

Equality is achieved if and only if

Sd‖u‖
4

d−2

L2∗
(Rd )

u = (−�)−1v = (−�)−1uq,

that is, if and only if u solves

−�u = 1

Sd

‖u‖− 4
d−2

L2∗
(Rd )

uq,

which means that u is an Aubin–Talenti function, optimal for (1). This completes the proof of
Theorem 1, up to the optimality of the proportionality constant, for which we know that

Cd = CSd with C ≤ 1. (8)

Incidentally, this also proves that v is optimal for (2). �
As a first step towards the proof of Theorem 2, let us start with a result for radial functions. If

d is a positive integer, we can define

sd := Sd

∣∣Sd−1
∣∣ 2

d

and get

sd = 4

d(d − 2)

(
Γ (d+1

2 )√
πΓ (d

2 )

) 2
d

. (9)

Using this last expression allows us to consider d as a real parameter.

Lemma 3. Assume that d ∈R and d > 2. Then

0 ≤ sd

( ∞∫
0

u
2d

d−2 rd−1 dr

)1+ 2
d

−
∞∫

0

u
d+2
d−2

(
(−�)−1u

d+2
d−2

)
rd−1 dr

≤ cd

( ∞∫
0

u
2d

d−2 rd−1 dr

) 4
d
[

sd

∞∫
0

∣∣u′∣∣2
rd−1 dr −

( ∞∫
0

u
2d

d−2 rd−1 dr

) d−2
d

]

holds for any radial function u ∈D1,2(Rd) with optimal constant cd ≤ sd .
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Here we use the notation (−�)−1v = w to express the fact that w is the solution to w′′ +
d−1

r
w′ + v = 0, that is,

(−�)−1v(r) =
∞∫
r

s1−d

s∫
0

v(t)td−1 dt ds ∀r > 0. (10)

Proof of Lemma 3. In the case of a radially symmetric function u, and with the standard abuse
of notations that amounts to identify u(x) with u(r), r = |x|, inequality (1) can be written as

sd

∞∫
0

∣∣u′∣∣2
rd−1 dr ≥

( ∞∫
0

|u| 2d
d−2 rd−1 dr

)1− 2
d

. (11)

However, if u is considered as a function of one real variable r , then the inequality also holds for
any real parameter d ∈ (2,∞) and is equivalent to the one-dimensional Gagliardo–Nirenberg
inequality

sd

( ∫
R

∣∣w′∣∣2
dt + 1

4
(d − 2)2

∫
R

|w|2 dt

)
≥

( ∫
R

|w| 2d
d−2 dt

)1− 2
d

as can be shown using the Emden–Fowler transformation

u(r) = (2r)−
d−2

2 w(t), t = − log r. (12)

The corresponding optimal function is, up to a multiplication by a constant, given by

w�(t) = (cosh t)−
d−2

2 ∀t ∈R,

which solves the Euler–Lagrange equation

−(p − 2)2w′′ + 4w − 2p|w|p−2w = 0

for any real number d > 2 and the optimal function for (11) is

u�(r) = (2r)−
d−2

2 w�(− log r) = (
1 + r2)− d−2

2

up to translations, multiplication by a constant and scalings. This establishes (9). See Appendix A
for details on the computation of sd . The reader is in particular invited to check that the expres-
sion of sd is consistent with the one of Sd given in the introduction.

Next we apply Legendre’s transform to (11) and get a Hardy–Littlewood–Sobolev inequality
that reads

∞∫
v(−�)−1vrd−1 dr ≤ sd

( ∞∫
v

2d
d+2 rd−1 dr

)1+ d
2

(13)
0 0
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for any d > 2. Inequality (13) holds on the functional space which is obtained by completion of
the space of smooth compactly supported radial functions with respect to the norm defined by
the r.h.s. in (13). Inequality (13) is the first inequality of Lemma 3.

Finally, we apply the completion of the square method. By expanding

0 ≤
∞∫

0

∣∣au′ − (
(−�)−1v

)′∣∣2
rd−1 dr

with a = sd(
∫ ∞

0 u
2d

d−2 rd−1 dr)
2
d and v = u

d−2
d+2 , we establish the second inequality of Lemma 3

(with optimal constant cd ≤ sd ). �
Now let us turn our attention to the case d = 2 and to Theorem 2. Using the fact that d in

Lemma 3 is a real parameter, we can simply consider the limit of the inequalities as d → 2+.

Corollary 4. For any function f ∈ L1(R+; r dr) such that f ′ ∈ L2(R+; r dr) and M =∫ ∞
0 ef (1 + r2)−22r dr , we have the inequality

0 ≤
∞∫

0

ef log

(
ef

M(1 + r2)2

)
2r dr

(1 + r2)2

− 2

M

∞∫
0

ef

(1 + r2)2
(−�)−1

(
ef

(1 + r2)2

)
2r dr + M

≤ M

[
1

8

∞∫
0

∣∣f ′∣∣2
r dr +

∞∫
0

f
2r dr

(1 + r2)2
− log

( ∞∫
0

ef 2r dr

(1 + r2)2

)]
. (14)

Here again (−�)−1 is defined by (10), but it coincides with the inverse of −� acting on radial
functions.

Proof. We may pass to the limit in (11) written in terms of

u(r) = u�(r)

(
1 + d − 2

2d
f

)

to get the radial version of Onofri’s inequality for f . By expanding the expression of |u′|2 we get

u′ 2 = u′ 2
� + d − 2

d
u′

�(u�f )′ +
(

d − 2

2d

)2(
u′

�f + u�f
′)2

.

Using the fact that limd→2+(d − 2)sd = 1,

sd = 1 + 1 − 1
log 2 + o(1) as d → 2+,
d − 2 2 2
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and

lim
d→2+

1

d − 2

∞∫
0

∣∣u′
�

∣∣2
rd−1 dr = 1,

1

d − 2

∞∫
0

∣∣u′
�

∣∣2
rd−1 dr − 1 ∼ −1

2
(d − 2),

lim
d→2+

1

d − 2

∞∫
0

u′
�(u�f )′rd−1 dr =

∞∫
0

f
2r dr

(1 + r2)2
,

lim
d→2+

1

4d2

∞∫
0

∣∣f ′∣∣2
u2

�r
d−1 dr = 1

16

∞∫
0

∣∣f ′∣∣2
r dr,

and finally

lim
d→2+

∞∫
0

∣∣∣∣u�

(
1 + d − 2

2d
f

)∣∣∣∣
2d

d−2

rd−1 dr =
∞∫

0

ef r dr

(1 + r2)2
,

so that, as d → 2+,

( ∞∫
0

∣∣∣∣u�

(
1 + d − 2

2d
f

)∣∣∣∣
2d

d−2

rd−1 dr

) d−2
d

− 1 ∼ d − 2

2
log

( ∞∫
0

ef r dr

(1 + r2)2

)
.

By keeping only the highest order terms, which are of the order of (d − 2), and passing to the
limit as d → 2+ in (11), we obtain that

1

8

∞∫
0

∣∣f ′∣∣2
r dr +

∞∫
0

f
2r dr

(1 + r2)2
≥ log

( ∞∫
0

ef 2r dr

(1 + r2)2

)
,

which is Onofri’s inequality written for radial functions.
Similarly, we can pass to the limit as d → 2+ in (13). Let v be a compactly supported smooth

radial function, considered as a function of r ∈ [0,∞) and let us compute the limit as d → 2+ of

h(d) :=
( ∞∫

0

v
2d

d+2 rd−1 dr

)1+ 2
d

− 1

sd

∞∫
0

vkd [v]rd−1 dr

where kd [v] := (−�)−1v is given by (10) for any d ≥ 2. If d > 2, since
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(2 − d)

∞∫
0

v(r)kd [v](r)rd−1 dr = (2 − d)

∞∫
0

v(r)rd−1

∞∫
r

s1−d

s∫
0

v(t)td−1 dt ds dr

= (2 − d)

∞∫
0

r1−d

( r∫
0

v(t)td−1 dt

)2

dr

= −2

∞∫
0

rv(r)

r∫
0

v(t)td−1 dt dr

we see that limd→2+ h(d) = 0 since

2

∞∫
0

rv(r)

r∫
0

v(t)t dt dr =
( ∞∫

0

rv(r) dr

)2

.

Let us compute the O(d − 2) term. With the above expression, it is now easy to check that

lim
d→2+

h(d)

d − 2
= 1

2

∞∫
0

vr dr

∞∫
0

v log

(
v∫ ∞

0 vr dr

)
r dr − log 2 − 1

2

( ∞∫
0

rv(r) dr

)2

+ 2

∞∫
0

vr dr

∞∫
0

v(r)r log r dr − 2

∞∫
0

rv(r)

r∫
0

v(t)t log t dt dr

= 1

2

∞∫
0

vr dr

∞∫
0

v log

(
v∫ ∞

0 vr dr

)
r dr − log 2 − 1

2

( ∞∫
0

rv(r) dr

)2

+ 2

∞∫
0

vr dr

∞∫
r

v(t)t log t dt

since 1
(d−2)sd

∼ 1 + d−2
2 (log 2 − 1). A computation corresponding to d = 2 similar to the one

done above for d > 2 shows that, when d = 2,

∞∫
0

vk2[v]r dr =
∞∫

0

v(r)r

∞∫
r

1

s

s∫
0

v(t)t dt ds dr

=
∞∫

0

1

r

( r∫
0

v(t)t dt

)2

dr

= −2

∞∫
r log rv(r)

r∫
v(t)t dt dr,
0 0
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thus proving that

lim
d→2+

h(d)

d − 2
= 1

2

∞∫
0

vr dr

∞∫
0

v log

(
v∫ ∞

0 vr dr

)
r dr −

∞∫
0

vk2[v]rd−1 dr

− 1

2
(log 2 − 1)

( ∞∫
0

rv(r) dr

)2

.

Now let us consider as above the limit

u
d+2
d−2 = (

1 + r2)− d+2
2

(
1 + d − 2

2d
f

) d+2
d−2 → (

1 + r2)−2
ef =: g

as d → 2. This concludes the proof of Corollary 4 by passing to the limit in the inequalities of
Lemma 3 and taking v = g. �
Proof of Theorem 2: a passage to the limit in the radial case. If we consider g as a function
on R

2 � x with r = |x|, this means that

lim
d→2+

h(d)

d − 2
= 1

2

∫
R2

g dx

∫
R2

g log

(
g∫

R2 g dx

)
dx − 2π

∫
R2

g(−�)−1g dx

+ 1

2
(1 + logπ)

( ∫
R2

g dx

)2

which precisely corresponds to the terms involved in (5), up to a factor 1
2M = 1

2

∫
R2 g dx. The

proof in the non-radial case will be provided at the end of Section 5. �
3. Linearization

In the previous section, we have proved that the optimal constant Cd in (3) is such that
Cd ≤ Sd . Let us prove that Cd ≥ d

d+4 Sd using a special sequence of test functions. Let F and G be
the positive integral quantities associated with, respectively, the Sobolev and Hardy–Littlewood–
Sobolev inequalities:

F[u] := Sd‖∇u‖2
L2(Rd )

− ‖u‖2
L2∗

(Rd )
,

G[v] := Sd‖v‖2

L
2d

d+2 (Rd )

−
∫
Rd

v(−�)−1v dx.

Since that, for the Aubin–Talenti extremal function u�, we have F[u�] = G[uq
� ] = 0, so that u�

gives a case of equality for (3), a natural question to ask is whether the infimum of F[u]/G[uq ],
under an appropriate normalization of ‖u‖ 2∗ d , is achieved as a perturbation of the u�.
L (R )
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Recall that u� is the Aubin–Talenti extremal function

u�(x) := (
1 + |x|2)− d−2

2 ∀x ∈ R
d .

With a slight abuse of notations, we use the same notation as in Section 2. We may notice that u�

solves

−�u� = d(d − 2)u
d+2
d−2
�

which allows to compute the optimal Sobolev constant as

Sd = 1

d(d − 2)

( ∫
Rd

u2∗
� dx

)− 2
d

(15)

using (12). See Appendix A for details. This shows that

1

Sd

F[u] = ‖∇u‖2
L2(Rd )

− d(d − 2)

( ∫
Rd

u2∗
dx

)1− 2
d
( ∫
Rd

u2∗
� dx

) 2
d

.

The goal of this section is to perform a linearization. By expanding F[uε] with uε = u� + εf ,
for some f such that

∫
Rd

f u�

(1+|x|2)2 dx = 0 at order two in terms of ε, we get that

1

Sd

F[uε] = ε2F[f ] + o
(
ε2)

where

F[f ] :=
∫
Rd

|∇f |2 dx − d(d + 2)

∫
Rd

|f |2
(1 + |x|2)2

dx.

According to Lemma 17 (see Appendix B), we know that

F[f ] ≥ 4(d + 2)

∫
Rd

|f |2
(1 + |x|2)2

dx

for any f ∈D1,2(Rd) such that∫
Rd

ffi

(1 + |x|2)2
dx = 0 ∀i = 0,1,2, . . . , d + 1, (16)

where

f0 := u�, fi(x) = xi

2
u�(x) and fd+1(x) := 1 − |x|2

2
u�(x).
1 + |x| 1 + |x|
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Notice for later use that

−�f0 = d(d − 2)
f0

(1 + |x|2)2

and

−�fi = d(d + 2)
fi

(1 + |x|2)2
∀i = 1,2, . . . , d + 1.

Also notice that

∫
Rd

fifj

(1 + |x|2)2
dx = 0

for any i, j = 0,1, . . . , d + 1, j �= i.
Similarly, we can consider the functional G as given above, associated with the Hardy–

Littlewood–Sobolev inequality, and whose minimum G[v�] = 0 is achieved by v� := u
q
� , q =

d+2
d−2 . Consistently with the above computations, let vε := (u� + εf )q = v�(1 + ε

f
u�

)q where f is

such that
∫
Rd

ff0
(1+|x|2)2 dx = 0. By expanding G[vε] at order two in terms of ε, we get that

G[vε] = ε2
(

d + 2

d − 2

)2

G[f ] + o
(
ε2)

where

G[f ] := 1

d(d + 2)

∫
Rd

|f |2
(1 + |x|2)2

dx −
∫
Rd

f

(1 + |x|2)2
(−�)−1

(
f

(1 + |x|2)2

)
dx.

Lemma 5. Ker(F) = Ker(G).

It is straightforward to check that the kernel is generated by fi with i = 1,2, . . . , d, d + 1.
Details are left to the reader. Next, by Legendre duality we find that

1

2

∫
Rd

|g|2
(1 + |x|2)2

dx = sup
f

( ∫
Rd

fg

(1 + |x|2)2
dx − 1

2

∫
Rd

|f |2
(1 + |x|2)2

dx

)
,

1

2

∫
Rd

g

(1 + |x|2)2
(−�)−1

(
g

(1 + |x|2)2

)
dx = sup

f

( ∫
Rd

fg

(1 + |x|2)2
dx − 1

2

∫
Rd

|∇f |2 dx

)
.

Here the supremum is taken for all f satisfying the orthogonality conditions (16). It is then
straightforward to see that duality holds if g is restricted to functions satisfying (16) as well.
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Consider indeed an optimal function f subject to (16). There are Lagrange multipliers μi ∈ R

such that

g − f −
d+1∑
i=0

μifi = 0

and after multiplying by f (1 + |x|2)−2, an integration shows that

∫
Rd

fg

(1 + |x|2)2
dx =

∫
Rd

|f |2
(1 + |x|2)2

dx

using the fact that f satisfies (16). On the other hand, if g satisfies (16), after multiplying by
g(1 + |x|2)−2, an integration gives

∫
Rd

|g|2
(1 + |x|2)2

dx =
∫
Rd

fg

(1 + |x|2)2
dx,

which establishes the first identity of duality. As for the second identity, the optimal function
satisfies the Euler–Lagrange equation

g

(1 + |x|2)2
+ �f =

d+1∑
i=0

μi

fi

(1 + |x|2)2

for some Lagrange multipliers that we again denote by μi . By multiplying by f and
(−�)−1(g(1 + |x|2)−2), we find that∫

Rd

fg

(1 + |x|2)2
dx =

∫
Rd

|∇f |2 dx

∫
Rd

g

(1 + |x|2)2
(−�)−1

(
g

(1 + |x|2)2

)
dx =

∫
Rd

fg

(1 + |x|2)2
dx

where we have used the fact that∫
Rd

fi

(1 + |x|2)2
(−�)−1

(
g

(1 + |x|2)2

)
dx =

∫
Rd

g

(1 + |x|2)2
(−�)−1

(
fi

(1 + |x|2)2

)
dx = 0

because (−�)−1(fi(1 + |x|2)−2) is proportional to fi . As a straightforward consequence, the
dual form of Lemma 17 then reads as follows.

Corollary 6. For any g satisfying the orthogonality conditions (16), we have

∫
d

g

(1 + |x|2)2
(−�)−1

(
g

(1 + |x|2)2

)
dx ≤ 1

(d + 2)(d + 4)

∫
d

g2

(1 + |x|2)2
dx.
R R
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Moreover, if f obeys to (16), then we have

4

d(d + 2)(d + 4)

∫
Rd

f 2

(1 + |x|2)2
dx ≤ G[f ] ≤ 1

d(d + 2)2(d + 4)
F[f ]

and equalities are achieved in L2(Rd, (1 + |x|2)−2 dx).

Proof. The first inequality follows from the above considerations on duality and the second one
from the definition of G, using

4

d(d + 2)(d + 4)
= 1

d(d + 2)
− 1

(d + 2)(d + 4)
.

To establish the last inequality, we can decompose f on (fk)k , the stereographic projection of the
spherical harmonics associated to eigenvalues λk = k(k + d − 1) with k ≥ 2, so as to meet con-
dition (16). See Appendix B for more details. The corresponding eigenvalues for the Laplacian
operator on the Euclidean space are μk = 4λk + d(d − 2), so that −�fk = μkfk(1 + |x|2)−2,
with ‖fk‖L2(Rd ,(1+|x|2)−2 dx) = 1. By writing f = ∑

k≥2 akfk we have

F[f ] =
∑
k≥2

ck, with ck := a2
k (μk − μ1),

G[f ] =
∑
k≥2

dk, with dk := a2
k

(
1

μ1
− 1

μk

)
,

with ck = μ1μkdk ≤ μ1μ2dk since (μk)k is increasing in k. This yields

F[f ]
G[f ] ≤ μ1μ2 = d(d + 2)2(d + 4),

with equality for f = f2. �
As a consequence of Corollary 6 and (15), we have found that

1

C := Sd

Cd

= inf
G[uq ]�=0

‖u‖
8

d−2

L2∗
(Rd )

SdF[u]
G[uq ] ≤ 1

d2(d + 2)2
inf
f

F[f ]
G[f ] = d + 4

d
, (17)

where the last infimum is taken on the set of all non-trivial functions in L2(Rd , (1 + |x|2)−2 dx)

satisfying (16). This establishes the lower bound in (3).

Remark 7. One may hope to get a better estimate by considering the case f ∈ Ker(F) = Ker(G)

and expanding F and G to the fourth order in ε but, interestingly, this yields exactly the same
lower bound on Cd as the linearization shown above.
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4. Improved inequalities and nonlinear flows

In Section 3, the basic strategy was based on the completion of a square. The initial approach
for the improvement of Sobolev inequalities in [22] was based on a fast diffusion flow. Let us
give some details and explain how even better results can be obtained using a combination of the
two approaches.

Let us start with a summary of the method of [22]. It will be convenient to define the func-
tionals

Jd [v] :=
∫
Rd

v
2d

d+2 dx and Hd [v] :=
∫
Rd

v(−�)−1v dx − Sd‖v‖2

L
2d

d+2 (Rd )

.

Consider a positive solution v of the fast diffusion equation

∂v

∂t
= �vm t > 0, x ∈ R

d, m = d − 2

d + 2
(18)

and define the functions

J(t) := Jd

[
v(t, ·)] and H(t) := Hd

[
v(t, ·)].

We shall denote by J0 and H0 the corresponding initial values. Elementary computations show
that

J′ = −(m + 1)
∥∥∇vm

∥∥2
L2(Rd )

≤ −m + 1

Sd

J1− 2
d = − 2d

d + 2

1

Sd

J1− 2
d , (19)

where the inequality is a consequence of Sobolev’s inequality. Hence v has a finite extinction
time T > 0 and since

J(t)
2
d ≤ J

2
d

0 − 4

d + 2

t

Sd

,

we find that

T ≤ d + 2

4
SdJ

2
d

0 .

We notice that H is nonpositive because of the Hardy–Littlewood–Sobolev inequality and by
applying the flow of (18), we get that

1

2
J− 2

d H′ = Sd‖∇u‖2
L2(Rd )

− ‖u‖2
L2∗

(Rd )
with u = v

d−2
d+2 .

The right hand side is nonnegative because of Sobolev’s inequality. One more derivation with
respect to t gives that

H′′ = J′
H′ − 4mSdJ

2
d K (20)
J
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where K := ∫
Rd vm−1|�vm + Λv|2 dx and Λ := d+2

2d
J′
J . This identity makes sense in dimension

d ≥ 5, because, close to the extinction time, v behaves like the Aubin–Talenti functions. The
reader is invited to check that all terms are finite when expanding the square in K and can refer
to [22] for more details. It turns out that the following estimate is also true if d = 3 or d = 4.

Lemma 8. Assume that d ≥ 3. With the above notations, we have

H′′

H′ ≤ J′

J
.

The main idea is that even if each of the above integrals is infinite, there are cancellations in
low dimensions. To clarify this computation, it is much easier to get rid of the time-dependence
corresponding to the solution with separation of variables and use the inverse stereographic
projection to recast the problem on the sphere. The sketch of the proof of this lemma will be
given in Appendix C.

A straightforward consequence is the fact that

H′′

H′ ≤ −κ with κ := 2d

d + 2

J
− 2

d

0

Sd

where the last inequality is a consequence of (19). Two integrations with respect to t show that

−H0 ≤ 1

κ
H′

0

(
1 − e−κT

) ≤ 1

2
CSdJ

2
d

0 H′
0 with C = d + 2

d

(
1 − e−d/2),

which is the main result of [22] (when d ≥ 5), namely

−H0 ≤ CSdJ
4
d

0

[
Sd‖∇u0‖2

L2(Rd )
− ‖u0‖2

L2∗ (
Rd

)] with u0 = v
d−2
d+2
0 .

Since this inequality holds for any initial datum u0 = u, we have indeed shown that

−Hd [v] ≤ CSdJd [v] 4
d
[
Sd‖∇u‖2

L2(Rd )
− ‖u‖2

L2∗
(Rd )

] ∀u ∈D1,2(
R

d
)
, v = u

d+2
d−2 .

It is straightforward to check that our result of Theorem 1 is an improvement, not only because
the restriction d ≥ 5 is removed, but also because the inequality holds with d

d+4 ≤ C < 1 <
d+2
d

(1 − e−d/2). In other words, the result of Theorem 1 is equivalent to

−H0 ≤ 1

2
CSdJ

2
d

0 H′
0 with C = d

d + 4
. (21)

Up to now, we have not established yet the fact that C < 1. This is what we are now going to do.
Now let us reinject in the flow method described above our improved inequality of Theorem 1,

which can also be written as

CSdJ
4
d

[
d + 2

SdJ′ + J1− 2
d

]
− H ≤ 0 (22)
2d
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if v is still a positive solution of (18). From Lemma 8, we deduce that

H′ ≤ κ0J with κ0 := H′
0

J0
.

Since t �→ J(t) is monotone decreasing, there exists a function Y such that

H(t) = −Y
(
J(t)

) ∀t ∈ [0, T ).

Differentiating with respect to t , we find that

−Y′(J)J′ = H′ ≤ κ0J

and, by inserting this expression in (22), we arrive at

C
(

−d + 2

2d
κ0S2

d

J1+ 4
d

Y′ + SdJ1+ 2
d

)
+ Y ≤ 0.

Summarizing, we end up by considering the differential inequality

Y′(CSds1+ 2
d + Y

) ≤ d + 2

2d
Cκ0S2

ds1+ 4
d , Y(0) = 0, Y(J0) = −H0 (23)

on the interval [0, J0] � s. It is then possible to obtain estimates as follows. On the one hand we
know that

Y′ ≤ d + 2

2d
κ0Sds

2
d

and, hence,

Y(s) ≤ 1

2
κ0Sds1+ 2

d ∀s ∈ [0, J0].

On the other hand, after integrating by parts on the interval [0, J0], we get

1

2
H2

0 − CSdJ
1+ 2

d

0 H0 ≤ 1

4
Cκ0S2

dJ
2+ 4

d

0 + d + 2

d
CSd

J0∫
0

s
2
d Y(s) ds.

Using the above estimate, we find that

d + 2

d
Sd

J0∫
s

2
d Y(s) ds ≤ 1

4
J

2+ 4
d

0 ,
0
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and finally

1

2
H2

0 − CSdJ
1+ 2

d

0 H0 ≤ 1

2
Cκ0S2

dJ
2+ 4

d

0 .

This is a strict improvement of (21) when C = 1 since (21) is then equivalent to

−SdJ
1+ 2

d

0 H0 ≤ 1

2
Cκ0S2

dJ
2+ 4

d

0 .

However, it is a strict improvement of (21) if C < 1 only when |H0| = −H0 is large enough (we
will come back to this point in Remarks 10 and 11). Altogether, we have shown an improved
inequality that can be stated as follows.

Theorem 9. Assume that d ≥ 3. Then we have

0 ≤ Hd [v] + SdJd [v]1+ 2
d ϕ

(
Jd [v] 2

d
−1[Sd‖∇u‖2

L2(Rd )
− ‖u‖2

L2∗
(Rd )

])
∀u ∈D1,2(

R
d
)
, v = u

d+2
d−2

where ϕ(x) := √
C2 + 2Cx − C for any x ≥ 0.

Proof. We have shown that y2 + 2Cy − Cκ0 ≤ 0 with y = −H0/(SdJ
1+ 2

d

0 ) ≥ 0. This proves that

y ≤ √
C2 + Cκ0 − C, which proves that

−H0 ≤ SdJ
1+ 2

d

0

(√
C2 + Cκ0 − C

)
after recalling that

1

2
κ0 = H′

0

J0
= Jd [v0] 2

d
−1[Sd‖∇u0‖2

L2(Rd )
− ‖u0‖2

L2∗
(Rd )

]
. �

Remark 10. We may observe that x �→ x −ϕ(x) is a convex nonnegative function which is equal
to 0 if and only if x = 0. Moreover, we have

ϕ(x) ≤ x ∀x ≥ 0

with equality if and only if x = 0. However, one can notice that

ϕ(x) ≤ Cx ⇐⇒ x ≥ 2
1 − C
C .

Remark 11. A more careful analysis of (23) shows that

Y(s) ≤ 1
(√

1 + 2κ0 − 1

)
CSds1+ 2

d ,

2 C
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which shows that the inequality of Theorem 9 holds with the improved function

ϕ(x) :=
√
C2 + Cx + 1

2
C2

(√
1 + 4x

C − 1

)
− C

but again the reader is invited to check that ϕ(x) ≤ x for any x ≥ 0 and limx→0+ ϕ(x)/x = 1.

Corollary 12. With the above notations, we have C < 1.

Proof. Assume by contradiction that C = 1. With the notations of Section 3, let us consider a
minimizing sequence (un)n∈N for the functional u �→ F [u]

G[uq ] but assume that Jd [uq
n] = Jd [uq

� ] =:
J� for any n ∈ N. This condition is not restrictive because of the homogeneity of the inequality.
It implies that (G[uq

n])n∈N is bounded.
If limn→∞ G[uq

n] > 0, then we also have L := limn→∞ F[un] > 0, at least up to the extraction
of a subsequence. As a consequence we find that

0 = lim
n→∞

(
SdJ

4
d
� F[un] − G

[
u

q
n

])
= Sd lim

n→∞
[
J

4
d
� F[un] − J

1+ 2
d

� ϕ
(
J

2
d
−1

� F[un]
)] + lim

n→∞
[
SdJ

1+ 2
d

� ϕ
(
J

2
d
−1

� F[un]
) − G

[
u

q
n

]]
,

a contradiction since the last term is nonnegative by Theorem 9 and, as observed in Remark 10,
J

4/d
� F[un] − J

1+2/d
� ϕ(J

2/d−1
� F[un]) is positive unless F[un] = 0.

Hence we know that L = limn→∞ F[un] = 0 and limn→∞ G[uq
n] = 0. According to the char-

acterization of minimizers of G by Lieb [36, Theorem 3.1], we know that up to translations and
dilations, uk converges to u�. Thus there exists fk such that uk = u� + fk with fk → 0, and
then

1

C = Sd

Cd

= lim
k→∞

1

d2(d + 2)2

F[fk]
G[fk] ≥ d + 4

d
.

This shows that C ≤ d
d+4 , a contradiction. �

We may observe that C < 1 means Cd < Sd . This completes the proof of Theorem 1.

5. Caffarelli–Kohn–Nirenberg inequalities and duality

Let 2∗ := ∞ if d = 1 or 2, 2∗ := 2d/(d − 2) if d ≥ 3 and ac := (d − 2)/2. Consider the space
D1,2

a (Rd) obtained by completion of D(Rd \{0}) with respect to the norm u �→ ‖|x|−a∇u‖2
L2(Rd )

.
In this section, we shall consider the Caffarelli–Kohn–Nirenberg inequalities

( ∫
Rd

|u|p
|x|bp dx

) 2
p ≤ Ca,b

∫
Rd

|∇u|2
|x|2a

dx (24)

These inequalities generalize to D1,2
a (Rd) the Sobolev inequality (1) and in particular the expo-

nent p is given in terms of a and b by
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p = 2d

d − 2 + 2(b − a)

as can be checked by a simple scaling argument. A precise statement on the range of validity
of (24) goes as follows.

Lemma 13. (See [11].) Let d ≥ 1. For any p ∈ [2,2∗] if d ≥ 3 or p ∈ [2,2∗) if d = 1 or 2, there
exists a positive constant Ca,b such that (24) holds if a, b and p are related by b = a −ac +d/p,
with the restrictions a < ac, a ≤ b ≤ a + 1 if d ≥ 3, a < b ≤ a + 1 if d = 2 and a + 1/2 < b ≤
a + 1 if d = 1.

At least for radial solutions in R
d , weights can be used to work as in Section 2 as if the

dimension d was replaced by the dimension (d − 2a). We will apply this heuristic idea to the
case d = 2 and a < 0, a → 0 in order to prove Theorem 2. See Appendix D for symmetry results
for optimal functions in (24).

On D1,2
a (Rd), let us define the functionals

F1[u] := 1

2

( ∫
Rd

|u|p
|x|bp dx

) 2
p

and F2[u] := 1

2
Ca,b

∫
Rd

|∇u|2
|x|2a

dx

so that inequality (24) amounts to F1[u] ≤ F2[u]. Assume that 〈·,·〉 denotes the natural scalar
product on L2(Rd , |x|−2a dx), that is,

〈u,v〉 :=
∫
Rd

uv

|x|2a
dx

and denote by ‖u‖ = 〈u,u〉1/2 the corresponding norm. Consider the operators

Aau := ∇u, A∗
aw := −∇ · w + 2a

x

|x|2 · w and

Lau := A∗
aAau = −�u + 2a

x

|x|2 · ∇u

defined for u and w respectively in L2(Rd , |x|−2a dx) and L2(Rd , |x|−2a dx)d . Elementary inte-
grations by parts show that

〈u,Lau〉 = 〈Aau,Aau〉 = ‖Aau‖2 =
∫
Rd

|∇u|2
|x|2a

dx.

If we define the Legendre dual of Fi by F∗
i [v] = sup

u∈D1,2
a (Rd )

(〈u,v〉 − Fi[u]), then it is

clear that we formally have the inequality F∗
2[v] ≤ F∗

1[v] for any v ∈ Lq(Rd , |x|−(2a−b)q dx) ∩
La(D1,2

a (Rd)), where q is Hölder’s conjugate of p, i.e.

1 + 1 = 1.

p q
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Using the invertibility of La , we indeed observe that

F∗
2[v] = 〈u,v〉 − F2[u] with v = Ca,bLau ⇐⇒ u = 1

Ca,b

L−1
a v,

hence proving that

F∗
2[v] = 1

2Ca,b

〈
v,L−1

a v
〉
.

Similarly, we get that F∗
1[v] = 〈u,v〉 − F1[u] with

|x|−2av = κ2−p|x|−bpup−1 (25)

and

κ =
( ∫
Rd

|u|p
|x|bp dx

) 1
p = 〈u,v〉 =

( ∫
Rd

|v|q
|x|(2a−b)q

dx

) 1
q

,

that is

F∗
1[v] = 1

2

( ∫
Rd

|v|q
|x|(2a−b)q

dx

) 2
q

.

This proves the following result.

Lemma 14. With the above notations and under the same assumptions as in Lemma 13, we have

1

Ca,b

〈
v,L−1

a v
〉 ≤ ( ∫

Rd

|v|q
|x|(2a−b)q

dx

) 2
q

∀v ∈ Lq
(
R

d, |x|−(2a−b)q dx
) ∩ La

(
D1,2

a

(
R

d
))

.

The next step is based on the completion of the square. Let us compute

∥∥Aau − λAaL−1
a v

∥∥2 = ‖Aau‖2 − 2λ
〈
Aau,AaL−1

a v
〉 + λ2〈AaL−1

a v,AaL−1
a v

〉
= ‖Aau‖2 − 2λ〈u,v〉 + λ2〈v,L−1

a v
〉
.

With the choice λ = 1/Ca,b and v given by (25), we have proved the following
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Theorem 15. Under the assumptions of Lemma 13 and with the above notations, for any u ∈
D1,2

a (Rd) and any v ∈ Lq(Rd , |x|−(2a−b)q dx) ∩ La(D1,2
a (Rd)) we have

0 ≤
( ∫
Rd

|v|q
|x|(2a−b)q

dx

) 2
q − 1

Ca,b

〈
v,L−1

a v
〉 ≤ Ca,b

∫
Rd

|∇u|2
|x|2a

dx −
( ∫
Rd

|u|p
|x|bp dx

) 2
p

if u and v are related by (25), if a, b and p are such that b = a − ac + d/p and verify the
conditions of Lemma 13, and if q = p/(p − 1).

If, instead of (25), we simply require that

|x|−2av = |x|−bpup−1,

then the inequality becomes

0 ≤ Ca,b

( ∫
Rd

|v|q
|x|(2a−b)q

dx

) 2
q − 〈

v,L−1
a v

〉

≤ Ca,b

( ∫
Rd

|u|p
|x|bp dx

) 2
p

(p−2)[
Ca,b

∫
Rd

|∇u|2
|x|2a

dx −
( ∫
Rd

|u|p
|x|bp dx

) 2
p
]

Hence Theorem 15 generalizes Theorem 1, which is recovered in the special case a = b = 0,
d ≥ 3. Because of the positivity of the l.h.s. due to Lemma 14, the inequality in Theorem 15
is an improvement of the Caffarelli–Kohn–Nirenberg inequality (24). It can also be seen as an
interpolation result, namely

2

( ∫
Rd

|v|q
|x|(2a−b)q

dx

) 2
q = 2

( ∫
Rd

|u|p
|x|bp dx

) 2
p ≤ Ca,b

∫
Rd

|∇u|2
|x|2a

dx + 1

Ca,b

〈
v,L−1

a v
〉

whenever u and v are related by (25). The explicit value of Ca,b is not known unless equality
in (24) is achieved by radial functions, that is when symmetry holds. See Proposition 19 in Ap-
pendix D for some symmetry results. Now, as in [30], we may investigate the limit (a, b) → (0,0)

with b = αa/(1 + α) in order to investigate the Onofri limit case. A key observation is that op-
timality in (24) is achieved by radial functions for any α ∈ (−1,0) and a < 0, |a| small enough.
In that range Ca,b is known and given by (D.1).

Proof of Theorem 2 (continued). Theorem 2 has been established for radial functions in Sec-
tion 2. Now we investigate the general case. We shall restrict our purpose to the case of dimension
d = 2. For any α ∈ (−1,0), let us denote by dμα the probability measure on R

2 defined by
dμα := μα dx where

μα := 1 + α |x|2α

2(1+α) 2
.

π (1 + |x| )



1712 J. Dolbeault, G. Jankowiak / J. Differential Equations 257 (2014) 1689–1720
It has been established in [30] that

log

( ∫
R2

eu dμα

)
−

∫
R2

udμα ≤ 1

16π(1 + α)

∫
R2

|∇u|2 dx ∀u ∈D
(
R

2), (26)

where D(R2) is the space of smooth functions with compact support. By density with respect to
the natural norm defined by each of the inequalities, the result also holds on the corresponding
Orlicz space.

We adopt the strategy of [30, Section 2.3] to pass to the limit in (24) as (a, b) → (0,0) with
b = α

α+1a. Let

aε = − ε

1 − ε
(α + 1), bε = aε + ε, pε = 2

ε
,

and

uε(x) = (
1 + |x|2(α+1)

)− ε
1−ε ,

assuming that uε is an optimal function for (24), define

κε =
∫
R2

[
uε

|x|aε+ε

]2/ε

dx =
∫
R2

|x|2α

(1 + |x|2(1+α))2

u2
ε

|x|2aε
dx = π

α + 1

Γ ( 1
1−ε

)2

Γ ( 2
1−ε

)
,

λε =
∫
R2

[ |∇uε|
|x|a

]2

dx = 4a2
ε

∫
R2

|x|2(2α+1−aε)

(1 + |x|2(1+α))
2

1−ε

dx = 4π
|aε|

1 − ε

Γ ( 1
1−ε

)2

Γ ( 2
1−ε

)
.

Then wε = (1 + 1
2εu)uε is such that

lim
ε→0+

1

κε

∫
R2

|wε|pε

|x|bεpε
dx =

∫
R2

eu dμα,

lim
ε→0+

1

ε

[
1

λε

∫
R2

|∇wε|2
|x|2aε

dx − 1

]
=

∫
R2

udμα + 1

16(1 + α)π
‖∇u‖2

L2(R2)
.

Hence we can recover (26) by passing to the limit in (24) as ε → 0+. On the other hand, if we
pass to the limit in the inequality stated in Theorem 15, we arrive at the following result, for any
α ∈ (−1,0).

Theorem 16. Let α ∈ (−1,0]. With the above notations, we have

0 ≤
∫
R2

v log

(
v

μα

)
dx − 4π(1 + α)

∫
R2

(v − μα)(−�)−1(v − μα)dx

≤ 1

16π(1 + α)

∫
2

|∇u|2 dx − log

( ∫
2

eu dμα

)
+

∫
2

udμα
R R R
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for any u ∈D, where u and v are related by

v = euμα∫
R2 eu dμα

.

The case α = 0 is achieved by taking the limit as α → 0−. Since −� logμα = 8π(1 + α)μα

holds for any α ∈ (−1,0], the proof of Theorem 2 is now completed, with μ = μ0. �
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Appendix A. Some useful formulae

We recall that

f (q) :=
∫
R

dt

(cosh t)q
=

√
πΓ (

q
2 )

Γ (
q+1

2 )

for any q > 0. An integration by parts shows that f (q + 2) = q
q+1f (q). The following formulae

are reproduced with no change from [20] (also see [28,25]). The function w(t) := (cosh t)
− 2

p−2

solves

−(p − 2)2w′′ + 4w − 2pwp−1 = 0

and we can define

Iq :=
∫
R

∣∣w(t)
∣∣q dt and J2 :=

∫
R

∣∣w′(t)
∣∣2

dt.

Using the function f , we can compute I2 = f ( 4
p−2 ), Ip = f (

2p
p−2 ) = f ( 4

p−2 + 2) and get the
relations

I2 =
√

πΓ ( 2
p−2 )

Γ (
p+2

2(p−2)
)

, Ip = 4I2
p + 2

= 4
√

πΓ ( 2
p−2 )

(p + 2)Γ (
p+2

2(p−2)
)
, J2 = 4I2

(p + 2)(p − 2)
.

In particular, this establishes (9), namely

sd = I
1− 2

d
p

J + 1 (d − 2)2I
, with p = 2d

d − 2
2 4 2
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for any d > 2. The expression of the optimal constant in Sobolev’s inequality (1): Sd =
sd |Sd−1|−2/d , where

∣∣Sd−1
∣∣ = 2πd/2

Γ (d/2)

denotes the volume of the unit sphere, for any integer d ≥ 3, follows from the duplication formula

2d−1Γ

(
d

2

)
Γ

(
d + 1

2

)
= √

πΓ (d)

according for instance to [1]. See [27, Appendix B.4] for further details.

Appendix B. Poincaré inequality and stereographic projection

On S
d ⊂ R

d+1, consider the coordinates ω = (ρφ, z) ∈ R
d × R such that ρ2 + z2 = 1, z ∈

[−1,1], ρ ≥ 0 and φ ∈ S
d−1, and define the stereographic projection Σ : Sd \ {N} → R

d by
Σ(ω) = x = rφ and

z = r2 − 1

r2 + 1
= 1 − 2

r2 + 1
, ρ = 2r

r2 + 1
.

The North Pole N corresponds to z = 1 (and is formally sent at infinity) while the equator (cor-
responding to z = 0) is sent onto the unit sphere Sd−1 ⊂R

d . Now we can transform any function
v on S

d into a function u on R
d using

v(ω) =
(

r

ρ

) d−2
2

u(x) =
(

r2 + 1

2

) d−2
2

u(x) = (1 − z)−
d−2

2 u(x).

A standard computation shows that

∫
Sd

|∇v|2 dω + 1

4
d(d − 2)

∫
Sd

|v|2 dω =
∫
Rd

|∇u|2 dx

and

∫
Sd

|v|q dω =
∫
Rd

|u|q
(

2

1 + |x|2
)d−(d−2)

q
2

dx.

On S
d , the kernel of the Laplace–Beltrami operator is generated by the constants and the lowest

positive eigenvalue is λ1 = d . The corresponding eigenspace is generated by v0(ω) = 1 and
vi(ω) = ωi , i = 1,2, . . . , d + 1. All eigenvalues of the Laplace–Beltrami operator are given by
the formula

λk = k(k + d − 1) ∀k ∈ N
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according to [3]. We still denote by u� the Aubin–Talenti extremal function

u�(x) := (
1 + |x|2)− d−2

2 ∀x ∈R
d .

Using the inverse stereographic projection, the reader is invited to check that Sobolev’s inequality
is equivalent to the inequality

4

d(d − 2)

∫
Sd

|∇v|2 dω +
∫
Sd

|v|2 dω ≥ ∣∣Sd
∣∣ 2

d

( ∫
Sd

|v| 2d
d−2 dω

) d−2
d

so that the Aubin–Talenti extremal function is transformed into a constant function on the sphere
and incidentally this shows that

Sd = 4

d(d − 2)

∣∣Sd
∣∣− 2

d .

With these preliminaries on the Laplace–Beltrami operator and the stereographic projection
in hand, we can now state the counterpart on R

d of the Poincaré inequality on S
d .

Lemma 17. For any function f ∈D1,2(Rd) such that

∫
Rd

f
u�

(1 + |x|2)2
dx = 0,

∫
Rd

f
(1 − |x|2)u�

(1 + |x|2)3
dx = 0, and

∫
Rd

f
xiu�

(1 + |x|2)3
dx = 0 ∀i = 1,2, . . . , d

the following inequality holds

∫
Rd

|∇f |2 dx ≥ (d + 2)(d + 4)

∫
Rd

f 2

(1 + |x|2)2
dx.

Proof. On the sphere we know that

∫
Sd

|∇v|2 dω + 1

4
d(d − 2)

∫
Sd

v2 dω ≥
(

λ2 + 1

4
d(d − 2)

)∫
Sd

v2 dω

= 1

4
(d + 2)(d + 4)

∫
Sd

v2 dω

if v is orthogonal to vi for any i = 0,1, . . . , d +1. The conclusion follows from the stereographic
projection. �
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Appendix C. Flow on the sphere and consequences

We recall that Eq. (18) admits special solutions with separation of variables given by

v�(t, x) = λ(d+2)/2(T − t)α
(
u�

(
(x − x0)/λ

)) d+2
d−2 (C.1)

where u�(x) := (1+|x|2)−(d−2)/2 is the Aubin–Talenti extremal function, x ∈R
d and 0 < t < T .

Such a solution is generic near the extinction time T , in the following sense.

Lemma 18. (See [21,41].) For any solution v of (18) with nonnegative, not identically zero initial
datum v0 ∈ L2d/(d+2)(Rd), there exist T > 0, λ > 0, c > 0 and x0 ∈ R

d such that v(t, ·) �≡ 0 for
any t ∈ (0, T ) and

lim
t→T−

(T − t)−
d+2

4 sup
x∈Rd

(
1 + |x|2)d+2

∣∣∣∣ v(t, x)

v�(t, x)
− c

∣∣∣∣ = 0

if v� is defined by (C.1).

If v solves the fast diffusion equation (18) on R
d , then we may use the inverse stereographic

projection (see Appendix B) to define the function w on S
d such that

v(t, x) = e− d+2
4 τ

(
2

1 + r2

) d+2
2

w(τ, y)

where τ = − log(T − t), r = |x| and y = ( 2x

1+r2 , 1−r2

1+r2 ) ∈ S
d ⊂R

d ×R.
With no loss of generality, assume that c = λ = 1 and x0 = 0. According to Lemma 18,

w uniformly converges as τ → ∞ to 1 on S
d . Let dσd denote the measure induced on S

d ⊂R
d+1

by Lebesgue’s measure on Rd+1. We may then write

J(t) = e− d
2 τ

∫
Sd

w
2d

d+2 dσd

and ∫
Rd

∣∣∇u
d−2
d+2

∣∣2
dx = e− d−2

2 τ

( ∫
Sd

∣∣∇w
d−2
d+2

∣∣2
dσd + 1

4
d(d − 2)

∫
Sd

∣∣w d−2
d+2

∣∣2
dσd

)

with τ = − log(T − t), so that dτ
dt

= eτ . Hence w solves

wτ = Lw
d−2
d+2 − 1

4
d(d − 2)w

d−2
d+2 + 1

4
(d + 2)w

where L denotes the Laplace–Beltrami operator on the sphere S
d , and
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d

dt
J = − 2d

d + 2
e− d−2

2 τ

( ∫
Sd

∣∣∇w
d−2
d+2

∣∣2
dσd + 1

4
d(d − 2)

∫
Sd

∣∣w d−2
d+2

∣∣2
dσd

)
,

d

dt

∫
Rd

∣∣∇u
d−2
d+2

∣∣2
dx = −2

d − 2

d + 2

∫
Sd

(
Lw

d−2
d+2 − 1

4
d(d − 2)w

d−2
d+2

)2

w− 4
d+2 dσd.

Using the Cauchy–Schwarz inequality, that is, by writing that

[ ∫
Sd

∣∣∇w
d−2
d+2

∣∣2
dσd + 1

4
d(d − 2)

∫
Sd

∣∣w d−2
d+2

∣∣2
dσd

]2

=
[ ∫
Sd

(
Lw

d−2
d+2 − 1

4
d(d − 2)w

d−2
d+2

)
w− 2

d+2 w
d

d+2 dσd

]2

≤
∫
Sd

(
Lw

d−2
d+2 − 1

4
d(d − 2)w

d−2
d+2

)2

w− 4
d+2 dσd

∫
Sd

w
2d

d+2 dσd,

we conclude that

Q = J
2
d
−1

∫
Sd

∣∣∇w
d−2
d+2

∣∣2
dσd

is monotone decreasing, and hence

H′′ = J′

J
H′ + 2JSdQ′ ≤ J′

J
H′.

This establishes the proof of Lemma 8 for any d ≥ 3.

Appendix D. Symmetry in Caffarelli–Kohn–Nirenberg inequalities

In this appendix, we recall some known results concerning symmetry and symmetry breaking
in the Caffarelli–Kohn–Nirenberg inequalities (24).

Proposition 19. Assume that d ≥ 2. There exists a continuous function α : (2,2∗) → (−∞,0)

such that limp→2∗ α(p) = 0 for which the equality case in (24) is not achieved among radial
functions if a < α(p) while for a < α(p) equality is achieved by

u�(x) := (
1 + |x| 2

δ
(ac−a)

)−δ ∀x ∈ R
d

where δ = ac+b−a . Moreover the function α has the following properties:
1+a−b
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(i) For any p ∈ (2,2∗), α(p) ≥ ac − 2
√

d−1
p2−4

.

(ii) For any p ∈ (2,2 d2−d+1
d2−3d+3

), α(p) ≤ ac − 1
2

√
(d−1)(6−p)

p−2 .

(iii) If d = 2, limp→2∗ β(p)/α(p) = 0 where β(p) := α(p) − ac + d/p.

This result summarizes a list of partial results that have been obtained in various papers.
Existence of optimal functions has been dealt with in [14], while condition (i) in Proposition 19
has been established in [31]. See [29] for the existence of the curve p �→ α(p), [23,24] for various
results on symmetry in a larger class of inequalities, and [28] for property (ii) in Proposition 19.
Numerical computations of the branches of non-radial optimal functions and formal asymptotic
expansions at the bifurcation point have been collected in [26,34]. The paper [30] deals with
the special case of dimension d = 2 and contains property (iii) in Proposition 19, which can be
rephrased as follows: the region of radial symmetry contains the region corresponding to a ≥
α(p) and b ≥ β(p), and the parametric curve p �→ (α(p),β(p)) converges to 0 as p → 2∗ = ∞
tangentially to the axis b = 0. For completeness, let us mention that [5, Theorem 3.1] covers the
case a > ac − d/p also we will not use it. Finally, let us observe that in the symmetric case, the
expression of Ca,b can be computed explicitly in terms of the Γ function as

Ca,b = ∣∣Sd−1
∣∣ p−2

p

[
(a − ac)

2(p − 2)2

p + 2

] p−2
2p

[
p + 2

2p(a − ac)2

][
4

p + 2

] 6−p
2p

[
Γ ( 2

p−2 + 1
2 )

√
πΓ ( 2

p−2 )

] p−2
p

(D.1)

where the volume of the unit sphere is given by |Sd−1| = 2π
d
2 /Γ (d

2 ).
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