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Introduction

We study the stationary states of two models for crowd motion and herding. Both systems involve two nonlinear parabolic evolution equations, one for the density and one for the
mean field potential. They resemble the Keller-Segel model for chemotaxis in its “prevention of overcrowding” variant. We investigate plateau-like solutions found by ?. On balls
we are able to prove multiplicity and qualitative properties of radial solutions, and also provide a numerical study of the stability of these solutions.

The models

The dynamical system reads as follow, models (I) and
(II) differ by the source term in the equation for D.
On a bounded, open set Ω ⊂ Rn consider:

∂tρ = ∆ρ−∇ · (ρ(1− ρ)∇D) ,

∂tD = κ∆D − δD +

{
ρ(1− ρ) (I)

ρ (II)
,

with no flux and homogeneous Neumann boundary
conditions for ρ and D respectively, so that mass
M =

∫
ρ is conserved.

The density ρ undergoes diffusion and drift along the
potential D. The coefficient ρ(1− ρ) in the drift term
accounts for saturation and can be seen as “prevention
of overcrowding”.
D is a field potential and corresponds to the density of
chemoattractant in the Keller-Segel model. It undergoes
diffusion and damping, and has a source term depending
on ρ.

I In model (I), D increases only if the density is not too
high. This model is derived from a cellular automaton
by ?.

I Model (II) is more standard in the setting of
chemotaxis, and has already been partially studied by
??.

In can of model (II), we have the following Lyapunov
functional:

L[ρ,D] :=

∫
ρ log ρ

+ (1− ρ) log(1− ρ)− ρD

+
κ

2

∫
|∇D|2 +

δ

2

∫
D2 .

Stationary solutions
We are interested in radially symmetric stationary

solutions:
−∆ρ−∇ · (ρ(1− ρ)∇D) = 0 ,

−κ∆D + δD =

{
ρ(1− ρ) (I)

ρ (II)
.

By solving for ρ in the first equation this reduces to: ρ =
1

1 + e−φ
,

−κ∆φ+ δ(φ+ D̄)− F ′(φ) = 0 ,

where φ = D − D̄ and D̄ ∈ R is chosen to meet the
mass constraint

∫
Ω ρ = M and

F (φ) =

{
1

1+e−φ
(I)

log(1 + eφ) (II)
.

Solutions to this equation are studied as critical points
of the following functional:

E[φ] :=
κ

2

∫
|∇φ|2 +

δ

2

∫
φ2 + δD̄

∫
φ− F (φ).
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Main result

If Ω is bounded with C1,α boundary for some
α > 0, then, for any D̄ ∈ RD̄ ∈ RD̄ ∈ R there exists a
minimizer of the energy E in H1(Ω). Minimisers are
radially symmetric and monotone when the domain is
a ball.

Actually, we know that minimizers are constant if we
look at the problem for fixed D̄. But for fixed mass,
we cannot conclude. Other solutions can be found
numerically using a shooting method.

Profile of monotone solutions

In the one dimensional unit ball:
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I On the left: evolution of the profile along the
branch, i.e. as D̄ varies

I On the right: steepening of the profile as κ
decreases for a given initial condition.

In 1D, reflections with respect to x = 1
2

are also
solutions because the equation for φ is autonomous.
The parameters used here —and elsewhere when not
specified— are δ = 10−3, κ = 5× 10−4. We use
these values to get interesting behaviour (existence of
plateaus), but this also results in a relatively sharp
numerical behaviour.

Energy comparison

At fixed D̄, on the left, constant solutions always
have lower energy.
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But for fixed mass, on the right, the energies are not
ordered.

Stability

For stationary solutions, stability can be defined in
two ways:

I A solution is variationally stable if it is a local
minimizer for E .

I It is dynamically stable if small perturbations decay
exponentially in time. This can be checked by
looking at the spectrum of the linearised evolution
operator around this solution.

Since that for the variational problem we have the
additional constraint

ρ =
1

1 + e−φ
,

dynamical stability implies variational stability.
Interestingly, it seems that both definitions coincide for
model (II) but not for model (I).

Acknowledgements
Authors have been supported by the ANR project CBDif-Fr.

J.D. and P.M. thank King Abdullah University of Science and Technology

(KAUST) for support.

Numerics

Computations were done using the NumPy/SciPy
packages. They are based on a simple shooting
method that enables us to find all radially symmetric
solutions.

I Parametrization by D̄:
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I Multiplicity and dynamical stability,
parametrization by mass:

Model (I) Model (II)
δ = 10−3, κ = 5× 10−4 δ = 10−3, κ = 10−2
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In the two cases we have the branch of constant
solutions (thin lines) and the branch of
plateau-like solutions (bold lines). Dotted lines
show the part of the branch where solutions are
dynamically unstable. The shaded area shows the
region of instability for constant solutions.
In model (I) there is an interval of mass for which
both constant solutions and non constant
solutions are stable. In model (II), stability is
exclusive to either branch.

Model (I) Model (II)
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In 2 dimensions, only variational stability is shown
for model (II). The figure on the right shows
coexistence of stable constant and non-constant
solutions for model (II).

Perspectives

I Understand the relation between parametrizations
by M and D̄.

I Better link variational and dynamical stability

I Complete the stability analysis with non-radial
perturbations

I Study existence and stability of non-radial
stationary solutions
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